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Abstract: This work presents a novel method for facial recognition that aggregates weak facial 
parts to overcome the problem of recognizing faces with incomplete information. By applying a 
landmark detection method that approximates 70 facial landmarks, we divide the face into 12 
weak information parts. These parts are further refined using superpixel segmentation, which 
increases the precision of face feature analysis. A weak classifier is training a weak part in order 
to recognize the face. We then aggregate these weak classifiers with a late-fusion voting 
technique to build a robust classification system. Our technique has been examined on subsets 
of the FaceScrub and VGG datasets, with a particular focus on frontal face pictures. Experiments 
show the effectiveness of our method, with an accuracy range of 54.5593% to 91.6346% on the 
tiny FaceScrub dataset and 45.8654% to 76.4231% on the tiny VGG dataset, depending on how 
many weak information parts are considered. This result demonstrates the potential for 
combining available weak information parts to improve the accuracy of face recognition systems, 
especially in situations where conventional approaches may be hampered by missing or occluded 
facial data. 
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1. Introduction 
 The field of computer vision has been extensively involved in addressing the complex issue 
of face recognition, a crucial element of biometrics that seeks to identify or authenticate people. 
This technique is essential in security systems, leveraging the distinctiveness of facial 
characteristics. Despite the fact that there have been numerous advances in face recognition 
technology, a number of factors can significantly affect how precise these methods are. Factors 
such as noise in facial images, oblique angles, profile faces, low image quality, or hidden 
essential facial characteristics might significantly diminish the effectiveness of these methods. 
Historically, facial recognition methods have been developed from frontal face images, acquiring 
information about facial characteristics globally. Nevertheless, their effectiveness dramatically 
diminishes when performed on incomplete face images, whereby only a limited number of 
characteristic parts, known as 'weak information parts', are available.  
 This research presents a novel framework for incomplete face recognition by combining 
various weak information parts. The framework utilizes a method of local feature learning, which 
involves dividing the face into 12 weak information parts such as the eyes, nose, mouth, cheeks, 
and forehead. The division is accomplished by employing Kazemi et al.'s method [1] of 
localizing 68 landmarks, with an extra estimation of 2 landmarks in the forehead region. 
Nevertheless, these parts may not exhibit consistent distinctiveness. For example, the nose region 
may overlap with some portions of the eye region. To tackle this issue, we apply superpixel 
clustering to combine adjacent pixels that have similar features, thereby effectively separating 
weak information parts. After separations, a specialized convolutional neural network (CNN) 
model is used to analyze each part. This model serves as a weak classifier that has been trained 
to identify people using only one weak information part. These classifiers are then combined 
through a late-fusion voting method to create a strong facial recognition system. This method 
aggregates the results of multiple weak classifiers, selecting the identity label with the highest 
score after voting.  
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 The effectiveness of our novel framework is evaluated using subsets of the FaceScrub and 
VGG datasets, which exclusively consist of frontal face images. The results of this study are 
encouraging, indicating an average precision of 54.5593% with a single weak information part 
and 91.6346% with all 12 parts combined on the tiny FaceScrub dataset. Similarly, the accuracy 
of the tiny VGG dataset is 45.8654% when considering only one weak information part and 
76.4231% when considering all 12 parts. The findings emphasize the potential of our suggested 
framework for improving the precision of face recognition systems, especially in difficult 
circumstances where complete facial data is unavailable. 

2. Related works
Many approaches have been investigated in the field of face recognition to increase precision

and flexibility in various scenarios. One approach worth mentioning is the aggregation of sub-
regions for face recognition. Li et al. [2] split the face into many rectangular blocks and obtained 
SIFT feature vectors from each using the Bag-of-Words (BoW) approach. These vectors were 
then quantized into codewords for each block, and histograms of codeword distribution were 
combined to represent the face. Although this approach demonstrated remarkable accuracy, 
particularly in dealing with facial emotions or occlusion, its effectiveness was mostly limited to 
images with minimal occlusion. The use of histogram representation made the BoW technique 
sensitive to face variances, hence making it less suitable for incomplete facial information. 
Furthermore, the division process using uniform rectangular blocks could include non-facial 
areas, thus potentially disrupting the histogram representation. In contrast, our work utilizes 
superpixels for division, a technique that reduces processing complexity, simplifies feature 
calculation, and better accommodates the natural contours of the face [3]. 
 Conventional approaches that use global features like PCA and LDA or local features such 
as Gabor and LBP typically require face alignment and yield uniformly sized concatenated 
feature vectors. However, these approaches were not effective in incomplete face recognition 
scenarios, where the face might lack essential information, causing difficulties with alignment 
and capturing critical features, especially in profile views. In response, Liao et al. [4] introduced 
the Multi-Keypoint Descriptor for facial representation and the Gabor Ternary Pattern for 
recognition without requiring facial alignment. This method surpassed PCA, LDA, and LBP in 
accuracy, especially in challenging scenarios such as face occlusion, face accessories, restricted 
field of view, intense light, and sensor saturation. Despite achieving higher accuracy, it required 
a substantial amount of keypoints and dictionary usage, resulting in significant computational 
load and a disregard for the geometric details of feature sets [5]. To address the challenges of 
partially captured facial images, Cao et al. [6] explored the mapping process between frontal and 
profile faces, developing a novel technique called the DREAM block. Furthermore, Schroff et 
al. [7] introduced Facenet, a system that learned to map face images to a condensed Euclidean 
space, generating a 128-dimensional feature vector for tasks like recognition, verification, and 
clustering. Despite producing state-of-the-art results, Facenet required training on a large dataset 
of over 200 million images across 8 million classes, necessitating significant computational 
resources. 
 The development of specific loss functions further distinguished the advancement in facial 
recognition. Wen et al. [8] presented the center loss technique combined with a summation 
operator and Softmax loss to refine facial recognition features. Similarly, Liu et al. [9] developed 
the A-Softmax loss function, which aimed to derive angularly discriminative features from the 
CNN's fully connected layer. Meanwhile, Deng et al. [10] created the Additive Angular Margin 
Loss, normalizing features and weights to enhance CNN-based learning. A common limitation 
of these methods was the potential misidentification of non-facial areas as facial components, 
depending on the face dataset used. Danh et al. [11] proposed a method for recognizing faces 
through the late fusion of multiple facial components, such as the eyes, nose, mouth, and the 
entire face. This method combined several independently trained weak classifiers for each facial 
component to form a strong classifier, achieving high accuracy on frontal face datasets with 
varying expressions. However, their research was limited to frontal faces with a small number 
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of facial components, segmented into rectangular blocks. This segmentation risked disrupting 
the geometric structure of certain non-frontal faces, thereby reducing accuracy. Our work 
expands on this approach by examining a larger number of weak information parts on the face, 
such as the cheeks, chin, and forehead. These parts are segmented using superpixels and 
landmark localization techniques, ensuring their uniformity in non-frontal faces and under 
varying emotional expressions. 
 
3. Methodology  
 The foundation of our methodology is the idea that combining the outcomes of weak 
classifications from various facial regions can yield robust face recognition. Figure 1 provides a 
simple visual representation of our approach, outlining the full procedures from image 
acquisition to final classification. Initially, the Division of Facial Parts module processes the 
input image by segmenting the face into various weak information parts. This module consists 
of three key stages: facial segmentation, which detects the face within the image; facial 
preprocessing, which standardizes the image for consistent analysis; and the division of the face 
into weak information parts using superpixel techniques, where each part represents a distinct 
facial feature, such as the left eye, right eye, nose, mouth, forehead, etc. We design a weak 
classifier for each segmented weak information part that can recognize faces based on the 
information in that part alone. These classifiers are considered 'weak' since each part has 
insufficient characteristics for effective facial recognition on its own. The performance metrics 
from these classifiers are then used as coefficients in our late fusion voting technique, which 
strengthens the decision-making process in the final classification stage. 
 Experiments are conducted with a specific subset of weak information regions on faces in 
order to validate our methodology. With a voting method and a late fusion strategy, we build a 
strong classifier for a face that has only a few weak information parts, such as 2, 3, and 4. 
Creating a scoreboard for each potential identity is required for this procedure; these scores are 
calculated using a combination of the probability vectors 𝑝𝑝𝑖𝑖  and the coefficients α𝑖𝑖 of each part 
𝑖𝑖. Subsequently, the test image is categorized according to the identity label that has accumulated 
the highest cumulative score. This methodology leverages the capabilities of a combination of 
multiple weak classifiers with a late-fusion voting method. This not only enhances accuracy in 
challenging scenarios such as partial or occluded faces but also ensures robustness against 
variations in facial expression and orientation. 
 
A. Division of Facial Parts 
 During this stage, our aim is to divide the face into weak information parts by employing a 
series of three modules, as illustrated in Figure 2. 

 
Figure 1. Overview of the proposed facial recognition methodology. The method begins with 

the segmentation of an input facial image into many weak information parts, followed by 
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extensive preprocessing and the use of superpixel segmentation to improve feature delineation. 
Next, a specialized weak classifier is assigned to each part, which is trained to identify facial 

features alone from that part. During the testing step, assuming that only parts 2, 3, and 4 of the 
face are available, we use a late fusion technique to combine the matching weak classifiers. 

This involves starting a voting process and making a scoreboard for identity labels. Eventually, 
the identity of the face is decided by selecting which identity has the best score. 

 
A.1. Facial Segmentation 
 We use a technique introduced by Kazemi and Sullivan [1] in conjunction with the Histogram 
of Oriented Gradient (HOG) technique, as proposed by Dalal and Triggs [12], to detect the face 
in an image and locate 68 landmark coordinates 𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑖𝑖 , 𝑖𝑖 = 0. .67�������. Using the description of the 
68 landmark points on the face 𝐼𝐼, we calculate the centroids of the left eye 𝐼𝐼Leye and right eye 
𝐼𝐼Reye using formula (1), with 𝑛𝑛 = 36, 𝑘𝑘 = 41 for 𝐼𝐼Leye and 𝑛𝑛 = 42, 𝑘𝑘 = 47 for 𝐼𝐼Reye. Since the 
identified face could be skewed, we normalize it by positioning the line between centroids 𝐼𝐼Leye 
and 𝐼𝐼Reye of two eyes, parallel to the lower border of the image, as shown in Figure 3. 

 
Figure 2. Modules for the division of facial parts. Given an input image, the face is segmented 

by detecting and localizing landmarks to define the face border, setting pixels beyond this 
boundary to zero. Then, facial image preprocessing begins. Finally, we divide the facial image 
into 𝒏𝒏 weak temporary information parts, then apply superpixels to build fresh boundary lines. 

 

 
Figure 3. Face normalization. Detecting a face in the left image and localizing features, 

especially eye landmarks, calculates their centroid. The image on the right shows the face after 
rotation. 

 
 𝐼𝐼centroid = 1

𝑛𝑛−𝑘𝑘+1
∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=𝑘𝑘  (1) 
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 Kazemi's method for locating the 68 markers does not include those on the forehead. Two 
additional landmarks, one located above the left eye and the other above the right eye, are 
necessary to acquire the forehead part. We define the vertical face axis of the normalized face as 
the line that goes through the middle point of the two eye centres and the point on top of the chin. 
To identify a left (or right) forehead landmark, as illustrated in Figure 4, we choose a point above 
the image's edge such that a line passing through it and the left (or right) eye centroid is parallel 
to the vertical face axis. This results in a total of 70 landmarks, with landmarks 68 and 69 
representing the left and right foreheads, respectively. We design the smallest rectangle capable 
of encompassing all of the 70 landmarks by identifying the two largest and smallest values on 
the horizontal and vertical axes. We crop and normalize the face image within this rectangle to 
produce the corrected image shown in Figure 4, setting all pixel values outside the face region 
to zero. 
 With landmarks 0 through 16 located on the face boundary, Kazemi's description 68 
landmarks aid in the formation of a closed face boundary. We create a set 𝑄𝑄1 of pixel coordinates 
by identifying those for every two consecutive landmarks that are on the same line segment. In 
addition, two lines parallel to the vertical face axis are drawn, one going through landmark 0 and 
the other through landmark 16, crossing at locations 𝐴𝐴1 and 𝐴𝐴2 on the image's top edge, from 
left to right, respectively. The pixels on the line segments connecting landmark 0 to 𝐴𝐴1, landmark 
16 to 𝐴𝐴2, and from 𝐴𝐴1 to 𝐴𝐴2 create sets 𝑄𝑄2, 𝑄𝑄3, and 𝑄𝑄4. The closed face border is defined by 
pixels in the set 𝑄𝑄 = ⋂ 𝑄𝑄𝑖𝑖4

𝑖𝑖=1 . All pixels inside this border are considered part of the face region, 
while all pixels outside of it are considered part of the background. Figure 4 illustrates the results 
of the segmentation process, which begins with the original image on the left and continues via 
face detection and landmark localization. The normalized face is in the center image, and the 
segmented face is in the right image, which is then utilized in the preprocessing stage. 
 

 
Figure 4. Left: Input image. Middle: Face crop from the input image and localize 68 landmarks 

plus two more landmarks on top of the forehead, and from landmarks that land on the face 
edge, we create a face boundary. Right: Pixels outside the face boundary have a value of 0. 

 
A.2. Facial Preprocessing 
 Different lighting or illumination conditions frequently have an impact on facial images in 
practical situations. This variability may appear as shadows, overexposure, or underexposure, 
impacting the visibility and distinguishability of facial features. The challenges become more 
noticeable in settings with varying light conditions, causing some areas of the face to be 
illuminated while others appear in shadow. In our proposed methodology, weak classifiers are 
trained on the weak information parts of the face, which are particularly affected by a lack of 
illumination. These parts contain low-level features that are particularly vulnerable to 
degradation due to lighting conditions. Shadows or bright light may obscure features within these 
parts, making accurate facial recognition more challenging. Technically, the lighting source 𝐿𝐿 
that strikes the surface of the face 𝑅𝑅 can impact the intensity of an image. In order to restore the 
initial facial information and alleviate the impact of 𝐿𝐿, gamma correction is applied subsequent 
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to face segmentation. Because gamma correction modifies intensity levels to correct shadows 
and highlights resulting from uneven lighting, it can restore the original appearance of face 
features, which is useful for preserving low-level features on weak information parts. 
 The gamma correction technique, which is a nonlinear grayscale transformation, modifies 
the pixel intensity 𝐼𝐼(𝑥𝑥,𝑦𝑦) in image 𝐼𝐼 to �𝐼𝐼(𝑥𝑥,𝑦𝑦)�𝛾𝛾, where 𝛾𝛾 >  0 and the intensity is contained 
within the interval [0,1]. This technique enhances the visibility of darker pixels when the value 
of 𝛾𝛾 is less than 1, decreases the brightness of pixels when the value of 𝛾𝛾 is more than 1, and 
maintains the intensity of the pixels when the value of 𝛾𝛾 is equal to 1. For images with intensity 
values ranging [𝑎𝑎, 𝑏𝑏], we suggest a heuristic for calculating 𝛾𝛾 by dividing [𝑎𝑎, 𝑏𝑏] into three equal 
segments: 

• Dark region: The intensity is in the range [𝑎𝑎, (𝑏𝑏 − 𝑎𝑎)/3]. 
• Medium region: The intensity is in the range [(𝑏𝑏 − 𝑎𝑎)/3,2 × (𝑏𝑏 − 𝑎𝑎)/3]. 
• Bright region: The intensity is in the range [2 × (𝑏𝑏 − 𝑎𝑎)/3, 𝑏𝑏]. 

 
 The application of gamma correction varies between channels. After segmentation, we 
calculate the mode and median by analyzing the density of pixel intensities in the facial region. 
Experimentally, we choose 𝛾𝛾 = 0.75 if the mode and median are in the dark region, suggesting 
that facial enhancement is required. Conversely, 𝛾𝛾 = 2 is selected if they are in the light region, 
which requires a reduction in intensity. Otherwise, 𝛾𝛾 is set to 1. The intensity of pixels (𝑥𝑥, 𝑦𝑦) in 
image 𝐼𝐼 is modified as follows, following the selection of an appropriate 𝛾𝛾 value: 
 (𝑥𝑥, 𝑦𝑦) ≔ (𝑏𝑏 − 𝑎𝑎) × �𝐼𝐼(𝑥𝑥,𝑦𝑦)

𝑏𝑏−𝑎𝑎
�
𝛾𝛾
 (2) 

With 𝛾𝛾 = 2, Figure 5 shows how gamma correction reduces lighting noise by comparing the 
image before (left) and after (right) the correction. By normalizing the lighting conditions across 
images, gamma correction indirectly contributes to the enhancement of the overall performance 
of the facial recognition system. It enables the deep neural network models to learn and 
generalize better from the data, resulting in improved accuracy and robustness against variations 
in lighting conditions encountered in real-world scenarios. 
 

 
Figure 5. Left: Image before gamma correction. Right: Image after gamma correction (𝜸𝜸 = 𝟐𝟐). 
 
A.3. Division of Face by Superpixel 
 Certain face features, such as the lips, nose, eyes, wrinkles on the forehead, or a scar on the 
left cheek, can act as weak parts for recognition when a face is not entirely captured in the image. 
In this module, we divide the face into 12 weak information parts that correspond to specific 
features: the left forehead, middle forehead, right forehead, right cheek, right chin, mouth, left 
chin, left cheek, left eye, the skin between the eyes, right eye, and nose. These locations are 
shown in the right image of Figure 6. Starting with 70 landmarks, we select 18 main points, as 
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indicated in the left image of Figure 6, and divide the face into 12 weak temporary information 
parts. Practically, these divisions may not often encompass entire parts in a uniform manner, 
which results in characteristics being represented in a variety of ways. In order to ensure feature 
consistency over these parts, we utilize superpixel segmentation to cluster neighboring pixels 
with similar features.  
 

 
Figure 6   Left: 18 main points on the face. Right: Delineation of 12 weak temporary 

information parts. 
 
 Given the variety in image sizes across the dataset, the number of superpixel segments 
required is dependent on the image size. In order to estimate the proper number of superpixel 
segments, we propose the following linear function 𝑓𝑓(𝑥𝑥): 

𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 (3) 
 
where: 
 𝑥𝑥 represents the area of the input image, 
 𝑓𝑓(𝑥𝑥) indicates the number of superpixel segments, 
 𝑎𝑎 and 𝑏𝑏 are coefficient. 
This function suggests that if 𝑥𝑥 ≤ −𝑏𝑏/𝑎𝑎, then 𝑓𝑓(𝑥𝑥) ≤ 0, which is not possible because it would 
result in a negative number of superpixel segments. Hence, in order to guarantee at least 50 
superpixel segments, we apply this function to images with an area of 𝑥𝑥 ≥ (50 − 𝑏𝑏)/𝑎𝑎. After 
superpixel segments have been distributed across the face, one segment might cover numerous 
weak temporary information parts. Hence, we say that a superpixel segment 𝐴𝐴 is assigned to a 
weak temporary part 𝑖𝑖 if the following conditions are met:    
 𝑖𝑖 = arg max��𝑃𝑃𝑗𝑗 ∩ 𝐴𝐴�� (4) 
where 𝑃𝑃 is the set of all temporary information parts intersected by 𝐴𝐴. 
 After assigning superpixel segments to each weak temporary information part, we redraw the 
borders of these parts depending on the superpixel segments they include, as seen in the right 
image of Figure 7. These parts are subsequently used in the specific DNNs architecture for 
classification.  
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Figure 7. A general overview of facial division. The left image shows 12 weak temporary parts. 
The middle image shows the application of superpixels on the face. The right image shows the 

selection of superpixels for each part. 
 

B. Deep Neural Networks 
B.1. Rescale Weak Information Parts 
 Because image sizes vary within the facial dataset, the dimensions of weak information parts 
can range dramatically. Before applying deep neural networks (DNNs), the dimensions of each 
part are standardized to mitigate this issue. As shown in Table 1, we establish constant 
dimensions for each weak information part in consideration of the face's vertical symmetry. The 
specified dimensions are defined in natural numbers: 
(𝑎𝑎1, 𝑎𝑎2, 𝑏𝑏1, 𝑏𝑏2, 𝑐𝑐1, 𝑐𝑐2,𝑑𝑑1,𝑑𝑑2, 𝑒𝑒1, 𝑒𝑒2, 𝑓𝑓1, 𝑓𝑓2,𝑔𝑔!,𝑔𝑔2, ℎ1, ℎ2). For any given weak information part 𝑖𝑖 
across the dataset, we construct a generic size of 𝑥𝑥𝑖𝑖 × 𝑦𝑦𝑖𝑖 × 3 by averaging the dimensions of the 
image height and width (assigned to 𝑥𝑥𝑖𝑖 and  𝑦𝑦𝑖𝑖). 
 

Table 1. Dimensions 𝑥𝑥𝑖𝑖 × 𝑦𝑦𝑖𝑖 × 3 of 
information parts, with 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖  representing 
height and width, respectively 
Size Information part 

𝑎𝑎1 × 𝑎𝑎2 × 3 0, 2 
𝑏𝑏1 × 𝑏𝑏2 × 3 1 
𝑐𝑐1 × 𝑐𝑐2 × 3 3, 7 
𝑑𝑑1 × 𝑑𝑑2 × 3 4, 6 
𝑒𝑒1 × 𝑒𝑒2 × 3 5 
𝑓𝑓1 × 𝑓𝑓2 × 3 8, 10 
𝑔𝑔1 × 𝑔𝑔2 × 3 9 
ℎ1 × ℎ2 × 3 11 

 
B.2. Image Augmentation  
 We enhance the dataset for each weak information part using image augmentation, producing 
an additional 30 images from each original image in the training set, to limit the risk of 
overfitting. This augmentation consists of adding blur filtering, bright and dark gamma 
correction, and sharpening filtering to the source image. Subsequent manipulations of these five 
images include left and right rotations, vertical flipping, and flips paired with rotations, yielding 
a total of 30 augmented images, as shown in Table 2. 
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Table 2. 30-image augmentation strategy 
 Original Gaussian blur 

filtering 
Bright 

Gamma 
correction 

Dark Gamma 
correction 

Sharpen 
filtering 

 

     

Left 
rotation 

     

Right 
rotation 

     

Vertical 
flip 

     
Left-
rotation 
vertical 
flip      
Right-
rotation 
vertical 
flip      

 
B.3. Data Normalization 
 The application of normalization helps to align the distribution of the data, which in turn 
promotes faster convergence during training. We use equations (2) and (3) to find the 𝑐𝑐-
dimensional mean (𝑀𝑀�) and standard deviation (σ) for a training set of 𝑛𝑛 images. Every image in 
the training, validation, and test sets is then normalized to zero mean and unit variance by 
removing 𝑀𝑀� and dividing by σ, according to equation (7). 
 𝑀𝑀�(𝑥𝑥,𝑦𝑦, 𝑐𝑐) = ∑ 𝐼𝐼𝑖𝑖(𝑥𝑥,𝑦𝑦,𝑐𝑐)𝑛𝑛

𝑖𝑖=1
𝑛𝑛

 (2) 

 𝜎𝜎(𝑥𝑥,𝑦𝑦, 𝑐𝑐) = �∑ �𝑀𝑀�(𝑥𝑥,𝑦𝑦,𝑐𝑐)−𝐼𝐼𝑖𝑖(𝑥𝑥,𝑦𝑦,𝑐𝑐)�
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

 (3) 

 𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝑐𝑐) ≔ 𝐼𝐼(𝑥𝑥,𝑦𝑦,𝑐𝑐)−𝑀𝑀�(𝑥𝑥,𝑦𝑦,𝑐𝑐)
𝜎𝜎(𝑥𝑥,𝑦𝑦,𝑐𝑐)+1𝑒𝑒−7

 (4) 
 
B.4. CNN Architectures 
 In our study, the weak information parts of a face are primarily characterized by low-level 
features. These characteristics, though not as prevalent as those used in recognizing complete 
frontal faces, play a vital role in identifying faces with incomplete information. Our aim requires 
the use of weak classifiers that capture these small, low-level features. It is important to realize 
that not all low-level features in weak information parts play an equal role in facial recognition. 
Certain parts of the face, such as the mouth or nose, may contain more unique characteristics that 
are closely tied to a person's identity, while parts like the cheek or forehead may provide fewer 
characteristics. This variability requires a CNN model capable of capturing a wide range of low-
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level features with different levels of recognizability. Thus, a multi-CNN approach is utilized, 
with a CNN model assigned to each weak information part as a weak classifier. The VGG 
network employs a series of convolutional layers (CONV) followed by max-pooling (POOL) 
layers, repeating this pattern to progressively deepen the network. The research employs a 
simplified version of the VGG architecture [13] that iterates the CONV-->CONV-->POOL 
(CCP) sequence across the network. This structure allows for a hierarchical processing of 
features, with initial layers capturing basic visual features such as edges and textures, which are 
then combined in subsequent layers to form complex patterns. This design is adept at extracting 
and refining low-level features across its layers, making it particularly suitable for identifying 
and enhancing low-level features within each weak information part.  
 The architectural layers used for training are illustrated in Figure 8. Parameter optimization 
is carried out using Adadelta, and the loss function is estimated using Softmax and cross-entropy 
[14]. In the final block, average pooling is used to match the size of the previous convolution 
layer, followed by batch normalization [15] to prevent overfitting and accelerate training. The 
data within each identity is partitioned in the following proportions: 6:2:2 for training, validation, 
and testing. On the training set, the CNN model is trained, and the model that achieves the largest 
accuracy 𝛽𝛽𝑖𝑖 in the validation set is retained during the training process.  

Figure 8. General CNN architecture with repeated CCP blocks and average pooling at the end. 
The last layers are batch normalization (BN) and a fully connected (FC) layer. 

 
C. Late Fusion of Weak Information Parts Using a Voting Method 
 In this paper, we present a late fusion strategy that uses a voting method to combine the weak 
information parts discovered on the face, with the goal of developing a robust classification 
mechanism. For 𝑘𝑘 weak classifiers, we consider the probability vector 𝑝𝑝𝑖𝑖  for each weak 
information part 𝑖𝑖, with 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘. This vector, which has a length that is equal to the number 
of identities that are contained in the dataset, is derived from the Softmax layer of each classifier 
𝑖𝑖. We then select the top 𝑚𝑚𝑖𝑖 identities inside 𝑝𝑝𝑖𝑖  with the highest probability. The voting procedure 
begins by creating a score table in which each identity starts with a score of zero. For each weak 
information part 𝑖𝑖, the product of its likelihood and the part coefficient 𝛼𝛼𝑖𝑖 raises the score of 
identities inside the top 𝑚𝑚𝑖𝑖. The identity with the largest cumulative score in this table is then 
identified as the classification result for the image. 
 In mathematical terms, let 𝑛𝑛 represent the entire amount of weak information parts present 
on the face. We make use of 𝛽𝛽𝑖𝑖 ∈ [0,1], which represents the largest probability that was attained 
on the validation set when training, in order to calculate the coefficient 𝛼𝛼𝑖𝑖 for each weak 
information part 𝑖𝑖. The equation used to determine 𝛼𝛼𝑖𝑖 is:  
 𝛼𝛼𝑖𝑖 = 𝛽𝛽𝑖𝑖

∑ 𝛽𝛽𝑗𝑗
𝑛𝑛
𝑗𝑗=1

 (5) 

  
 The Softmax layer of the CNN architecture, which is responsible for weak information part 
𝑖𝑖, generates a probability vector 𝑝𝑝𝑖𝑖  of length 𝑐𝑐, which corresponds to the number of identities of 
the dataset. Each element 𝑝𝑝𝑖𝑖[𝑡𝑡], where 1 ≤ 𝑡𝑡 ≤ 𝑐𝑐, represents the probability of part 𝑖𝑖 belonging 
to an identity 𝑡𝑡. Assuming the test face has 𝑘𝑘 weak information parts (𝑘𝑘 ≤ 𝑛𝑛), for each part 𝑖𝑖, 
we extract the top 𝑚𝑚𝑖𝑖 identities with the largest probabilities, forming the set 𝑂𝑂𝑖𝑖  as indicated in 
equation (6). The scoring for each identity is conducted as per equation (7). 
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 𝑂𝑂𝑖𝑖 = {𝑐𝑐𝑚𝑚𝑖𝑖|𝑝𝑝𝑖𝑖[𝑐𝑐𝑚𝑚𝑖𝑖] is one of the top 𝑚𝑚𝑖𝑖 largest value on 𝑝𝑝𝑖𝑖} (6) 
 𝑆𝑆(𝑢𝑢) = ∑ (𝛼𝛼𝑖𝑖 × 𝑝𝑝𝑖𝑖[𝑢𝑢]) × 𝑃𝑃(𝑢𝑢,𝑂𝑂𝑖𝑖)𝑘𝑘

𝑖𝑖=1  (7) 
with 

 𝑃𝑃(𝑢𝑢,𝑂𝑂𝑖𝑖) = �1, 𝑢𝑢 ∈ 𝑂𝑂𝑖𝑖
0, 𝑢𝑢 ∉ 𝑂𝑂𝑖𝑖

 (8) 

 
Finally, arg max

𝑢𝑢
𝑆𝑆(𝑢𝑢) determines the predicted identity of the face image, thereby combining 

contributions of each weak classifier into a complete decision-making framework.  
 
4. Experiments 
 We evaluated our method on a system with 24GB of RAM, an Intel (R) CoreTM i7-6700K 
CPU running at 4.00GHz, and a 4GB NVIDIA GeForce GTX 980 GPU. We implemented 
software using Python in conjunction with Keras and TensorFlow. 
 
A. Datasets  
 To evaluate our novel approach, we exclusively utilized frontal face images from the dataset. 
We examined both scenarios in which all 12 weak information parts were present and those in 
which only a subset of these parts were visible, as outlined in Table 3. The original FaceScrub 
dataset [16], [17] has 106,863 images spread across 530 identities, with an average of 200 images 
per  identity.  Images  from  the  FaceScrub  dataset  are  shown  in Figure 9. We created a smaller 
   

 
Figure 9. Sample images from the FaceScrub dataset. 

 

 
Figure 10. A selection of VGG dataset images. 
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subset of this dataset called 'tiny FaceScrub', which contains 65 identities, each represented by 
80 randomly picked images. Similarly, the original VGG [18] [19] dataset, which is famous for 
its collection of celebrity images on the internet, contains 2,622 identities. A selection of samples 
taken from the VGG dataset is presented in Figure 10. Our studies were conducted on a ‘tiny 
VGG' dataset, which had 100 identities and 130 images for each. The tiny VGG dataset, in 
contrast to the tiny FaceScrub dataset, contains cases in which images from one identity may 
show individuals from different classes. This is demonstrated in Figure 11, which contains 
images from the Adam Beach class that mistakenly include the faces of Tom Jackson, Robin 
Williams, and Adam Walsh.  

 

 
Figure 11. 26 preprocessed test images from the Adam Beach class, including Tom Jackson, 

Adam Walsh, and Robin Williams. 
 

Table 3   Image illustration on information parts used for testing 
Weak 

informa
tion 

parts on 
the face 

All 12 1, 5, 9, 
11 

0, 1, 2, 
8, 9, 10 4, 5, 6 3, 7, 11 0, 6, 7 2, 3, 4 

Illustrat
ion 

       
 
B. Data Preprocessing 
 For both the tiny FaceScrub and tiny VGG datasets, we divided the detected faces into 12 
weak information parts. To determine the necessary amount of superpixel segments for every 
face, we utilized formula (3) with 𝑎𝑎 = 0.07 and 𝑏𝑏 = −1125.46. We made sure to use only face 
images that had a minimum of 16,793 pixels, so each image would have at least 50 superpixel 
segments. As shown in Table 4, each part of the tiny FaceScrub dataset was scaled to conform 
to a standard dimension. We estimated the mean 𝑀𝑀�FS

𝑖𝑖  and standard deviation 𝜎𝜎FS
𝑖𝑖  for all images 

in each weak information part 𝑖𝑖 in the training set. Equation (4) used these statistics to standardize 
the images across parts.   
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Table 4   Dimensions of weak information parts of the FaceScrub dataset 

Part 0 1 2 3 4 5 
Size 76 × 59 × 3 80 × 148 × 3 76 × 59 × 3 94 × 50 × 3 63 × 68 × 3 94 × 94 × 3 
Part 6 7 8 9 10 11 
Size 63 × 68 × 3 94 × 50 × 3 98 × 95 × 3 40 × 104 × 3 55 × 62 × 3 108 × 107 × 3 

  
 After resizing each weak information part in the tiny VGG dataset according to Table 5, we 
computed the mean 𝑀𝑀�VGG

𝑖𝑖  and standard deviation 𝜎𝜎VGG
𝑖𝑖  for each part 𝑖𝑖. Normalization of images 

within these parts was conducted using equation (4), based on the obtained 𝑀𝑀�VGG
𝑖𝑖  and 𝜎𝜎VGG

𝑖𝑖 .  
 

Table 5   Dimensions of weak information parts of the VGG dataset 
Part 0 1 2 3 4 5 
Size 68 × 48 × 3 50 × 100 × 3 68 × 48 × 3 106 × 58 × 3 60 × 66 × 3 80 × 76 × 3 
Part 6 7 8 9 10 11 
Size 60 × 66 × 3 106 × 58 × 3 46 × 50 × 3 36 × 82 × 3 46 × 50 × 3 88 × 88 × 3 

 
C. CNNs 
 We analyzed images of weak information parts, each of which had dimensions of 𝑥𝑥 × 𝑦𝑦 × 3, 
in accordance with our experiments. We utilized two different forms of the small VGG design, 
one with three CCP (CONV->CONV->POOL) blocks and another with four. The size of the part 
determined the number of CCP blocks used in each variant. For the tiny FaceScrub dataset, which 
consists of 65 identities with 80 images each, we allocated 3120 images (60%) for training, 1040 
images (20%) for validation, and the remaining 1040 for testing. The augmentation of the 
training set images produced a total of 93,600 images for training. The 12 weak information parts 
were processed using four CCP blocks for parts 1, 5, and 11, and three CCP blocks for the other 
parts. The model parameters were optimized according to the highest probability on the 
validation set, after 300 epochs of training with a minibatch size of 150 were completed. The 
accuracy found on the validation set is shown in Figure 12. These were then used in equation (5) 
to get the coefficients for each weak information part, which are listed in Table 6. 
 

Table 6. Validation set accuracy and coefficients for weak information  
parts on the FaceScrub dataset 

Part 0 1 2 3 4 5 
Accuracy on 
validate set 41.923% 57.019% 43.077% 51.058% 34.904% 67.212% 

Coefficient 41923
654712 

57019
654712 

43077
654712 

51058
654712 

34904
654712 

67212
654712 

Part 6 7 8 9 10 11 
Accuracy on 
validate set 34.327% 49.615% 65.673% 61.442% 64.712% 83.750% 

Coefficient 34327
654712 

49615
654712 

65673
654712 

61442
654712 

64712
654712 

83750
654712 

 
 The tiny VGG dataset, which had 100 identities and 130 images each, was divided into 72 
images for training (after producing an extra 30 images per original image for augmentation, for 
a total of 216,000 training images), 2600 images for validation, and another 2600 for testing. 
Because of the smaller image sizes in this dataset, parts 5 and 11 received four CCP blocks, 
while the remaining areas received three CCP blocks. The training had a minibatch size of 100 
and consisted of 300 epochs, which was similar to the approach used for the FaceScrub dataset. 
The parameters were chosen based on validation set accuracy, and the results were verified on 
the test set. With coefficients determined using equation (5) and shown in Table 7, Figure 13 
shows the training and validation accuracy rates throughout the 12 weak information parts. 
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Figure 12. Sequentially organized accuracy rates on the training and validation sets throughout 

the 12 FaceScrub dataset weak information parts. 
 

    

    

    
Figure 13. Training and validation accuracy for each weak information part in the VGG 

dataset, displayed sequentially. 
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 Table 7. set accuracy and coefficients for weak information parts on the VGG dataset. 
Part 0 1 2 3 4 5 

Accuracy on 
validate set 37.731% 49.038% 40.269% 38.615% 34.962% 53.192% 

Coefficient 
37731

550384
 

49038
550384

 
40269

550384
 

38615
550384

 
34962

550384
 

53192
550384

 
Part 6 7 8 9 10 11 

Accuracy on 
validate set 48.462% 39.885% 47.115% 47.308% 49.115% 64.692% 

Coefficient 
48462

550384
 

39885
550384

 
47115

550384
 

47308
550384

 
49115

550384
 

64692
550384

 

 
D. Result 
 To built a strong classification base on weak classifications, we applied late fusion of weak 
information parts by a voting method. Suppose we had 𝑘𝑘 weak information parts on a test face, 
then for each weak information part 𝑘𝑘𝑖𝑖, we selected 𝑚𝑚𝑖𝑖 = 5 and applied to equation (6) to got 
the set 𝑂𝑂𝑖𝑖 . This set contained five identities with weak information part 𝑖𝑖 that most similar to 
weak information part 𝑖𝑖 of test face, using probability vector returned from the Softmax layer in 
the network. Finally, we scored each identity by using equation (7) and concluded that the test 
face belongs to the identity with the highest score. We experimented with our method on the face 
with enough 12 weak information parts and just a few parts. The result for cases in Table 3 shown 
in Table 8. Generally, we experimented with any 𝑘𝑘 weak information parts and archived the 
average accuracy given a test face contain 𝑘𝑘 weak information part in Table 9. Compared to the 
tiny FaceScrub dataset, the tiny VGG dataset's accuracy was lower because each class on the 
tiny VGG may contained face images from another identity, which could cause noise due to the 
training process.    
 

Table 8. Experimental results for scenarios detailed in Table 3,  
across the FaceScrub and VGG datasets 

Weak information parts on 
the face 

FaceScrub VGG 

All 12 91.6346% 76.423% 
1, 5, 9, 11 88.0769% 71.231% 

0, 1, 2, 8, 9, 10 81.8269% 67.500% 
4, 5, 6 69.0385% 58.192% 

3, 7, 11 83.9423% 66.346% 
0, 6, 7 55.4808% 54.346% 
2, 3, 4 57.5962% 49.692% 

  
 We used a late fusion approach, which involved combining weak information parts through 
a voting procedure, in order to generate a robust classifier from weak classifications. To build 
the set 𝑂𝑂𝑖𝑖 , we used equation (6) to choose the top five identities for each part 𝑘𝑘𝑖𝑖, assuming that 
the test face contained 𝑘𝑘 weak information parts. This allowed us to form the set 𝑂𝑂𝑖𝑖 . The 
probability vectors in this set came from the Softmax layer of the network that was trained on 
the weak information part 𝑖𝑖. These identities were very close to the real label of the test face. 
Then, using equation (7), each identity was assigned a score, and the test face was ultimately 
recognized as the identity with the highest score. Our technique was evaluated on faces that 
contained all twelve weak information parts as well as those that contained only a subset of those 
parts. The results for individual situations are shown in Table 8. Table 9 shows the average 
accuracies obtained across different setups of 𝑘𝑘 weak information parts. The accuracy of the tiny 
VGG dataset was significantly lower than that of the tiny FaceScrub dataset, which was due to 
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the presence of images from other identities within each identity, introducing noise and 
potentially affecting training efficacy.  
 

Table 9. Average accuracy given a face image has 𝑘𝑘 weak information parts. 
Number of weak information parts 

(𝑘𝑘) FaceScrub VGG 

1 54.5593% 45.8654% 
2 65.4560% 53.6964% 
3 73.0039% 59.8802% 
4 78.0027% 64.1960% 
5 81.4535% 67.2827% 
6 83.9780% 69.5785% 
7 85.9229% 71.3441% 
8 87.4660% 72.7512% 
9 88.7426% 73.9035% 

10 89.8412% 74.8601% 
11 90.8013% 75.6667% 
12 91.6346% 76.4231% 

 
5. Conclusion 
 In conclusion, this work presented a cutting-edge facial recognition technique developed 
specifically to address the challenges posed by incomplete facial features. Our method, which 
improves the accuracy of face recognition even when there is little facial information available 
or when the images are subject to variations, lighting irregularities, or angular distortions, is 
based on the strategic aggregation of weak information parts within frontal facial images. Using 
a late fusion voting mechanism, we systematically combined the classification results of 
numerous weak information parts, considerably improving the overall accuracy of the facial 
recognition system. The effectiveness of our approach was thoroughly tested on the tiny 
FaceScrub and tiny VGG datasets, which are subsets of the larger FaceScrub and VGG 
collections, respectively. The results of our research highlight the potential of utilizing weak 
information parts in order to improve the accuracy of facial recognition. By taking into account 
all 12 weak information locations, our algorithm was able to attain an accuracy of up to 
91.6346% on the tiny FaceScrub dataset and 76.4231% on the tiny VGG dataset. Even with a 
single weak information part, the system was able to achieve respectable accuracies of 54.5593% 
on the little FaceScrub dataset and 45.8654% on the tiny VGG dataset. The results show that our 
suggested framework can withstand typical obstacles in the recognition of faces such as 
occlusion, illumination changes, and facial accessories. In the future, the methodology described 
here provides new opportunities to improve face recognition systems, particularly in situations 
where conventional methods can fail because of insufficient facial features. 
 
6. References 
[1]. V. Kazemi and J. Sullivan, "One millisecond face alignment with an ensemble of 

regression trees," Proceedings of the IEEE conference on computer vision and pattern 
recognition, pp. 1867-1874, 2014. 

[2]. Z. Li, J. I. Imai and M. Kaneko, "Robust face recognition using block-based bag of 
words," in 2010 20th International Conference on Pattern Recognition, 2010, August. 

[3]. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua and S. Süsstrunk, "SLIC superpixels 
compared to state-of-the-art superpixel methods," IEEE transactions on pattern analysis 
and machine intelligence, pp. 2274-2282, 2012. 

[4]. S. Liao, A. K. Jain and S. Z. Li, "Partial face recognition: Alignment-free approach," 
IEEE Transactions on pattern analysis and machine intelligence, pp. 1193-1205, 2012. 

Vo Hoang Trong, et al.

177



 
 

 
 

[5]. R. Weng, J. Lu, J. Hu, G. Yang and Y. P. Tan, "Robust feature set matching for partial 
face recognition," in Proceedings of the IEEE International Conference on Computer 
Vision, 2013. 

[6]. K. Cao, Y. Rong, C. Li, X. Tang and C. Change Loy, "Pose-robust face recognition via 
deep residual equivariant mapping," in Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, 2018. 

[7]. F. Schroff, D. Kalenichenko and J. Philbin, "Facenet: A unified embedding for face 
recognition and clustering," in Proceedings of the IEEE conference on computer vision 
and pattern recognition, 2015. 

[8]. Y. Wen, K. Zhang, Z. Li and Y. Qiao, "A discriminative feature learning approach for 
deep face recognition," in European conference on computer vision, 2016, October. 

[9]. W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj and L. Song, "SphereFace: Deep Hypersphere 
Embedding for Face Recognition," in The IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), 2017. 

[10]. J. Deng, J. Guo, N. Xue and S. Zafeiriou, "ArcFace: Additive Angular Margin Loss for 
Deep Face Recognition," 2019 

[11]. N. V. Danh, V. H. Trong and P. T. Bao, "Developing a late fusion of multi facial 
components for facial recognition with a voting method and global weights," 
International Journal of Computational Vision and Robotics, vol. 13, no. 6, pp. 619-640, 
2023. 

[12]. N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," 2005. 
[13]. K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image 

recognition," arXiv preprint arXiv:1409.1556, 2014. 
[14]. M. D. Zeiler, "ADADELTA: an adaptive learning rate method," arXiv preprint 

arXiv:1212.5701, 2012. 
[15]. S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by 

reducing internal covariate shift," International conference on machine learning, 2015. 
[16]. H.-W. Ng and S. Winkler, "A data-driven approach to cleaning large face datasets," Image 

Processing (ICIP), 2014 IEEE International Conference on, 2014. 
[17]. University of Washington, "MegaFace and MF2: Million-Scale Face Recognition," 

[Online]. Available: http://megaface.cs.washington.edu/. 
[18]. Visual Geometry Group, "VGG Face Dataset," 4 September 2015. [Online]. Available: 

https://www.robots.ox.ac.uk/~vgg/data/vgg_face/. 
[19]. O. M. Parkhi, A. Vedaldi and A. Zisserman, "Deep Face Recognition," British Machine 

Vision Conference, 2015. 
[20]. Stanford University, "CS231n: Convolutional Neural Networks for Visual Recognition," 

Spring 2017. [Online]. Available: http://cs231n.github.io/convolutional-
networks/#layers. 

[21]. "Keras: The Python Deep Learning library," [Online]. Available: https://keras.io/. 
[22]. "TensorFlow: An open-source machine learning framework for everyone," [Online]. 

Available: https://www.tensorflow.org/. 
[23]. N. Abudarham, L. Shkiller and G. Yovel, "Critical features for face recognition," 

Cognition, pp. 73-83, 2019.  
 
 
 

Late Fusion of Weak Information for Incompleted Face Recognition

178

http://megaface.cs.washington.edu/
https://www.robots.ox.ac.uk/%7Evgg/data/vgg_face/
http://cs231n.github.io/convolutional-networks/#layers
http://cs231n.github.io/convolutional-networks/#layers
https://keras.io/
https://www.tensorflow.org/


 
 

 
 

Vo Hoang Trong received the Bachelor's in Computer Science from Faculty 
of Mathematics and Computer Science, University of Science - VNUHCM, in 
2017, and the M.Eng. and Doctoral degree from Chonnam National University, 
Korea, in 2020 and 2023. Since 2023, he has been a member of DFocus 
company in data solution, Korea. His research interests are Deep Neural 
Networks, Pattern Recognition, and Machine Learning. 
 
 

 
 

Pham The Bao is Associate Professor and the Dean of Information Science 
Faculty, Sai Gon University. Dr. Pham teaches and conducts research in the 
areas of image processing, pattern recognition, and intelligent computing. His 
Lab is Intelligent Computing – Image Processing (IC-IP Lab). Dr. Pham has 
BS in Pure Mathematics (The field is Algebra – Topological Geometry) from 
University of HCM City and MS in Computer Science from University of 
Natural Science – National University of HCM City, Vietnam in 1995 and 
2000. After getting BS, he became lecturer of Mathematics and Computer 

Science Faculty to 2018. He completed doctoral studies and earned a PhD in Computer Science 
at University of Science – National University of HCM City, Vietnam in 2009. From 2007 to 
2016, he is Vice Dean of Mathematics & Computer Science Faculty. And from 2004 to 2018, he 
is head of Computer Science Department, University of Science, Vietnam. He moved to Sai Gon 
University from 2019. 
 
 

Vo Hoang Trong, et al.

179




