Automated PRPD Pattern Analysis using Image Recognition

A. Müller, M. Beltle and S. Tenbohlen

Institute of Power Transmission and High Voltage Technology
University of Stuttgart, Stuttgart, Germany
Andreas.Mueller@ieh.uni-stuttgart.de

Abstract: This contribution describes an evaluation method for phase resolved patterns of partial discharges over time. Therefore, their specific shape characterizes patterns in question. The method searches for these characteristics within PRPD patterns by comparing characterization and PRPD using 2-dimensional cross-correlation. Cross-correlation represents a measure for the similarity between different PRPD patterns. A use case determines the usability of the method in practice. The result is the time dependent occurrence of specific patterns, respectively specific PD sources. Long-term monitoring data of an aged generator step-up transformer with several PD sources of varying activity is used as PD dataset. PDs are recorded by the use of the electromagnetic PD measurement method, also known as the UHF-method.

Keywords: Partial discharge; long-term measurement; UHF method; monitoring; phase resolved patterns; cross-correlation;

1. Introduction

Power transformers are essential equipment concerning the availability of electrical energy networks. Local failures of the insulation may lead to breakdowns and can cause high outage and penalty costs. To prevent destroying events, power transformers are tested. Common advanced diagnosis methods for transformers in service are given by dissolved gas analysis (DGA) [1], Frequency Response Analysis (FRA) [2], moisture measurement [3] and electrical partial discharges (PDs) measurements [4]. They are performed during routine tests of new transformers. Today, also PD measurements during service are a qualified method for particular transformers. Because common PD diagnostics are measurements performed within hours, it only provides snapshot information about transformers’ condition. In contrast, permanent online monitoring of PD is used to gain operational experiences and evaluate trending.

In comparison to existing methods for transformer diagnosis, monitoring demands new methods and strategies for evaluation. The continuous data stream generated by monitoring devices has to be treated differently than single measurements performed for diagnostic purposes. Required are methods, which allow the determination of long-term measurement. For the analysis of large amounts of data the user needs assistance which can be realized e.g. by statistical evaluation and extraction of significant information. This can be done simultaneously during monitoring or for post-measurement evaluation. Considering these demands, this contribution presents a method for automated PRPD pattern analysis. Aim is to evaluate several PD sources independently. Therefore, sources have to be distinguished by its characteristic PRPD pattern. As an approach for the evaluation, 2-dimensional cross-correlation known from image recognition is introduced. It compares the characteristic of a source (its shape) with measured PRPD patterns. The resulting correlation coefficient is a measure for the similarity. Hence, a high correlation coefficient indicates the appearance of the source in the determined PRPD pattern. By performing cross-correlation over the entire database, the activity of sources can be traced and evaluation of the overall PD of the transformer and causing sources can be made.
2. Measurement Setup of the Use case

The need of assistance in data evaluation is illustrated by this use case: At a 50-year-old step-up transformer generator with a rated voltage of 110/10 kV and a rated power of 120 MVA an online PD measurement system records data [5]. Since the beginning of the monitoring process in the summer of 2009, the generator step-up transformer has been in service for 80 days. An electrical PD measurement with external high voltage coupling capacitors shows different PD sources on each phase with PD between 100 and 500 pC. Also, unsteady PD up to 1 nC was occasionally observed [6]. Electrical PD measurement according to IEC 60270 [4] shows certain drawbacks for permanent onsite, online measurements. Therefore, the so called “UHF PD measuring method” (UHF: Ultra High Frequency) is used. It is based on the fact that PD are fast electrical processes radiating electromagnetic waves with frequencies up to the ultrahigh range (UHF: 300 – 3000 MHz) in the surrounding oil. Due to the moderately attenuated propagation of UHF waves inside the transformer tank, the electromagnetic wave detection is very sensitive [7]. In addition, the transformer tank is grounded and represents a Faraday cage shielding external noise like corona. An UHF probe (Figure 1) is installed in an oil flange valve of the transformer [8], for the measurement of UHF PD. Compared to electrical PD measurements; the UHF method has to be treated differently. Unlike electrical PD measurements, UHF measurements cannot be calibrated in terms of apparent charge in Pico coulombs (pC) because the strength of the electromagnetic field is measured. However, like electrical measurements, it is possible to correlate PD to the phase angle of the applied voltage using the phase resolved PD (PRPD) pattern. The UHF PD monitoring of the transformer is done with a Double Lemke LDS-6/UHF measuring system. UHF PD signals are measured with approximately 35 dB amplification and a bandwidth of 9 MHz at a center frequency of 505 MHz Phase L1 is used for phase correlation and Matlab is used for data analysis. Like the electrical measurement, UHF also shows several active PD sources in the transformer and fast changes in both the shape of PD patterns and amplitude levels.

3. Long-term PD Analysis

The diagram shown in Figure 2 gives a first impression on the long-term PD evolution of the transformer for both amplitude as well as frequency of occurrence. Shown is the number of recorded PD events and the corresponding maximum amplitude in mV over time. PD sure accumulated over one hour representing one bar in the plot. For a better survey, a compressed view is used that neglects days when the generating unit was not in operation.

Only PDs above a noise level of 2 mV up to the maximum at 25 mV are considered. At times, the UHF level in Figure 2 remains at a constant level the measurement system was overdriven. So the amplitudes of the overdriven PD pulses are not known; however, the events are counted anyway. The black line in Figure 2 is a moving average over the number of PD illustrating the high volatility of the activity. Regularities or trends of PD events over time do not become obvious. The mean value of all considered PDs is at 180 000 events per hour, which corresponds to one event per 50 cycle, whereas the standard deviation is at 330 000 events per hour or 1.8 events per cycle. The average of the UHF amplitude is 15.4 mV but will be higher without overdrive. In the following, not only the number of PD is considered but dedicated patterns. Figure 3 shows four different PRPD patterns recorded during one day of
service. The variety makes manual evaluation of single patterns complex and time-consuming. Therefore, mathematical evaluation becomes necessary.

Figure 2. Entire PD events per hour and corresponding max. amplitude

Figure 3. Four examples of different patterns measured by UHF-monitoring at the considered 120 MVA generator setup unit.

4. Normalized Cross-Correlation

Cross-correlation is an algorithm for pattern recognition within an image. The more two images are alike, the higher is the correlation. Typically, for application not the entire pattern is defined as search parameter, but one significant detail characterizing the pattern is extracted. It defines the so called template. Template and image are cross-correlated. Mathematically speaking, it is a measure for the similarity between the entries of two matrices. The result is the correlation factor of template and image for each position of the image. It is provided by a 2-dimensional result matrix, whose coordinates represent the correlation factor of template and image at each position of the original image.
A. Principle of work

Template and image are given by two matrices: A (template) and B (image). The image is a PRPD pattern. Its matrix contents is interpreted as no PD if the value is 0 and PD if its 1. Values in between are possible and needed for image filtering but do not have a physical meaning. For cross-correlation, the template and the image must overlap. The intersections of both matrices are multiplied. The return value is the correlation coefficient that is the measure for the similarity between template and image at the intersection. Cross-correlation of all possible intersections yields a new two dimensional matrix containing correlation coefficients for all combinations of template and image. The maximum value is an indicator for the occurrence of the pattern represented by the template within the image. If the pattern is searched in a quantity of images normalized cross-correlation is used, because normalization makes correlation factors comparable. For normalization the geometric mean value of the intersection of template (i) and image (j) is subtracted from the correlation removing any offset. The result is divided by the RMS-value of the offset-free cross-correlation. The mathematical equations are shown in Figure 4. (1) represents 2-dimensional cross-correlation and (2) normalized 2-dimensional cross-correlation. In (2) the numerator is the offset-free cross-correlation for all possible intersections, the denominator is its RMS-value. Resulting matrix C contains values between -1 and 1, where 1 means maximum normalized correlation and -1 detects inversions (the negative) of the template.

\[C(x_1, y_1) = \sum_{x=0}^{X-1} \sum_{y=0}^{Y-1} A(x, y)B(x + x_1, y + y_1) \]
\[D(x_1, y_1) = \frac{\sum \sum (A(x, y) - \bar{A})(B(x + x_1, y + y_1) - \bar{B})}{\sqrt{\sum \sum (A(x, y) - \bar{A})^2 \sum \sum (B(x + x_1, y + y_1) - \bar{B})^2}} \]

Figure 4. Mathematical description of cross-correlation (1) and normalized cross-correlation (2) of image B and template A. x1 and y1 are the coordinates of the resulting correlation coefficient matrix C.

B. Example for a specific pattern

A PRPD pattern typical for this transformer is given in Figure 5. The diagram shows PD accumulated for 1 minute. Data comes from a continuous measurement period of about 6 hours, leading to about 1 million PDs in total. Manual analysis of PD data show that this pattern occurs not periodically but regularly.

Figure 5. Typical PRPD pattern of an UHF measurement. The measurement is synchronized to phase 1.
C. Template definition

To find a specific pattern in an image, a unique part of the pattern is used to create the template. In this case, one tip of the pattern is selected. The template is a binary matrix. Ones indicates PD, zeros means PD must not occur at this position of the template. A suited template definition is crucial. It should exclusively characterize the desired pattern. Otherwise, detection will be inaccurate. Two templates of different sizes are generated, see Figure 6. The smaller is an extract of the larger template. Yellow indicates areas with PD, blue without. The larger template is now cross-correlated with the pattern from Figure 5. The resulting correlation matrix D is visualized in Figure 7.

The correlation coefficient is high in areas where the pattern occurs (red colored areas), its maximum is at 0.63 or 63%. The maximum can be used as an indicator for the occurrence of the template in the pattern, which also means the occurrence of the PD source. Because the template is simplified in comparison to the real pattern, 100% correlation does never occur (and is not needed). PRPD patterns always do slightly change. If the maximum correlation factors stay at the same level, the method will be able recognize similar patterns, which is desired. To recognize shapes in the pattern which exceed 360° and continue at 0° the PRPD pattern is enlarged: The area from 0° to 50° is copied and added at the right end of the phase axis.
D. Image preprocessing

Depending on the quality of the available PRPD patterns, image preprocessing can help to improve correlation results. If a pattern consists of few PD (e.g. if accumulation time is short) requirements of the template are not fulfilled in the pattern and hence, correlation coefficients are low. If only few PD events are available, the pattern has to be preprocessed. Single pixels by PD have to be transformed into areas being suited for cross-correlated. In this approach, averaging filters are used. The filter joins nearby small areas containing PD by blurring them together; Figure 8 illustrates the general process. The filter calculates the value (the number of PD) of a single pixel by building the mean value of its surrounding pixels. For this contribution, filters of sizes 3x3 and 5x5 were used and tested. As can be seen in Table 1, the larger filter did not improve correlation results.

![Figure 8. Principle of 3x3 averaging filter. Left: original shape, right: blurred shape](image)

E. Application

For long-term evaluation, the available data is segmented into constant intervals. For each interval, e.g. one hour or one minute, the PRPD pattern is generated, can be preprocessed by filtering and is then cross-correlated with the template. The maximum correlation factor of resulting matrix C represents the correlation for this interval. The detection criteria are defined by a threshold value. If the maximum correlation factor is higher, the source characterized by the template is defined as active.

5. Parameter Study

To determine the accuracy of cross-correlation different cases are tested. Two templates are used shown in Figure 6: the small 23x27 and the larger 63x52 template which includes more area of the pattern. Test conditions are:

- PRPD patterns containing different patterns but not the specific one: Cross-correlation should return low correlation. Herby, the quality of the template is tested. High correlation coefficients indicate a non suitable template.
- PRPD patterns containing both, different patterns and the specific pattern: Cross-correlation should return high correlation. Additional PD should not disturb the correlation.
- Third parameter for testing is the accumulation time used for the generation of a PRPD pattern.

Filtering is not used for this evaluation because focus lies on the quality of cross-correlation itself.

Figure 9 shows correlation with the 23x27 template from a 6 hour data set containing all required test conditions.

- From 23.00h to 2.00h, there are no patterns or patterns not characterized by the template.
- After 2.00h, the specific pattern occurs regularly.

Three accumulation times are used:

- Cross-correlation on PRPD patterns generated using PD occurring during one hour (dotted line),
- For 15 minutes (dashed line) and
• Every minute (gray line).

The PRPD pattern for the time steps are calculated and manual comparison estimates if the specific pattern is recognized correctly: The pattern can always be seen if correlation is above 65%. At times, the pattern cannot be seen the correlation level is below 51%. Therefore, the threshold level is defined to 60% in the following.

![Figure 9. Parameter study for cross-correlation](image)

Grey line: correlation coeff. per minute, dashed line: correlation coeff. per 15 minutes interval, dotted line correlation coeff. once per hour

A high ratio of correlation between active and non-active pattern is needed for a valid recognition. The parameter study shows that higher accumulation time (one hour) leads to a smaller volatility of correlation. Correlation coefficients are smaller in comparison to short accumulation times (15 or 1 minute), but ratios between non-active and active pattern are the same. Threshold triggered correlation can therefore considered to be a suitable method to detect the occurrence of the specified pattern. Shorter accumulation time reveals more detailed information about the activity of sources over time. In the presented case, the specific pattern is not permanently available after 2.00h but shows periodical behavior. Manual checkup confirms the results from cross-correlation.

6. Evaluation

A statistical comparison of cross-correlation using 1 minute accumulation time, 23x27 and 63x52 templates (from Figure 6) and two average filter sizes (3x3 and 5x5) is shown in Table 1. Results in the first row refer to times the specific pattern occurs (along with other patterns). The second row refers to times the specific pattern is not present but others are active. The value defines the “noise level”. In the first row, higher values are better; the second row requires low values. Best results are obtained by using the small template and a small averaging filter. A larger averaging filter leads to a smaller ratio because correlation in row 2 also increases.

The 63x52 template without filtering is improper, it yields just noise (correlation of row 2 is larger than 1). Results can be improved by filtering but they do not exceed the quality of the small template. Tests with additional templates of different sizes affirm the advantage of smaller templates.
Table 1. Comparison of templates and filters

<table>
<thead>
<tr>
<th></th>
<th>23x27 template</th>
<th>63x52 template</th>
<th>23x27 template</th>
<th>23x27 template</th>
<th>63x52 template</th>
<th>63x52 template</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no filter</td>
<td>3x3 avg. filter</td>
<td>5x5 avg. filter</td>
<td>3x3 avg. filter</td>
<td>5x5 avg. filter</td>
<td></td>
</tr>
<tr>
<td>Specific pattern occurs, 90th percentile of all correlations is greater</td>
<td>44%</td>
<td>32%</td>
<td>64%</td>
<td>74%</td>
<td>54%</td>
<td>60%</td>
</tr>
<tr>
<td>No specific pattern: 99th percentile of all correlations is below</td>
<td>35%</td>
<td>38%</td>
<td>46%</td>
<td>57%</td>
<td>43%</td>
<td>48%</td>
</tr>
<tr>
<td>Ratio</td>
<td>1.26</td>
<td>0.84</td>
<td>1.39</td>
<td>1.3</td>
<td>1.26</td>
<td>1.25</td>
</tr>
</tbody>
</table>

7. Examples of use

The result of the cross-correlation using one minute accumulation time and small 27x37 template without filtering is compared to the number of PD at the same time. Figure 10 shows both plots over time, the used dataset is the same as in Figure 9. From 2.00 h to 5.00 h correlation coefficient peaks reaching from 70 % to 80 % are above threshold level, indicating activity of the source. The number of PDs rises and decreases simultaneously with correlation coefficient.

From 23.00 h to 2.00 h, there are about 2000 PDs per minute. A peak appears at 0.00 h. The correlation coefficient is permanently below selected threshold level at 60 %. Therefore, correlation implies that the considered source is not responsible for the peak. PRPD patterns of both intervals are plotted in Figure 11.
Manual comparison between the correlation coefficients and the PRPD pattern confirm the results of cross-correlation. The pattern responsible for increased correlation from 23.50 h to 0.40 h is of similar shape but can be clearly distinguished by correlation.

For a long term evaluation, three typical PRPD patterns are chosen, as shown in Figure 12. Color indicates the number of PD, x-axis is the phase angle and y-axis the voltage amplitude of the UHF signal. Pattern 1 und 2 are generated by using PDs during one minute. Pattern 3 is less active, accumulation time therefore is one hour. For these patterns, templates are defined and correlated with the dataset. Using threshold level as trigger, times are identified the patterns occur. Figure 13 shows in the upper plot the overall PD measured during the monitoring. In this view, only operating days of the transformer are shown resulting in 80 days of data. The measured PD per minute are plotted in blue, showing high volatility. For better survey, a moving average in brown is introduced. Data at around day 50 cannot be evaluated due to measurement errors. The lower plot shows a bar graph for each pattern. In the lower plot color indicates times the patterns were detected. The initially considered pattern 1 is only present at 15% of the time. Pattern 2 has higher appearance and can be detected at 40%. Pattern 3 is often present (60%).

Comparison of PDs per minute and pattern occurrence shows an anomaly at day 11 with a high number of PD. About 10^5 PDs per minute are measured. As origin, pattern 2 can be identified. This pattern has to be considered carefully because it is assumed to be a strong
source responsible for high H$_2$ gas levels [5]. Pattern evaluation generally indicates pattern 2 and 3 to be main sources for PD activity of this transformer. Pattern 1 does not lead to a general rise of PD activity considering long time data.

Figure 13. Upper image: overall PD per minute in blue, brown moving average lower image: occurrence of patterns 1, 2 and 3 in the entire available dataset (~80 days)

8. Conclusion

Cross-correlation can be used to determine monitoring data. The method allows finding specific PRPD patterns in PD datasets of any size. The quality of correlation depends on several parameters. Well chosen templates leads to high correlation if the pattern in question occurs and low correlation if no or other patterns are active and correlation works selectively. Smaller templates should be preferred. Filtering can improve correlation outcome; but again, results strongly depends on the chosen filter method and its parameterization. If preconditions are met, a threshold level can be defined acting as trigger. Cross-Correlation also leads to sufficient recognition rates if several patterns are active at once.

Using threshold level specific patterns can be tracked; hence, the trend of the causing PD source can be determined in its long time behavior. Thus, their share to the overall PD activity can be rated. In addition, detailed information about the activity of PD sources can be determined using short accumulation times.

9. Outlook

Additional preprocessing can be used to improve correlation furthermore like alternative filter methods, e.g. 2-dimensional low-pass image filtering. By defining standard templates for typical sources correlation can be used to classify detected sources in terms of their origin. A PD monitoring system could take track of all sources and create a timetable, which considers all sources at once.

Additional benefit is provided by combination of information. E.g., the overall number of PD can be compared to single sources providing information about the contribution of a source to the PRPD pattern.

Further tests are needed to prove the concept in practice. Then, it might be used as alarm parameter operating in stand-alone mode. Human interaction would be necessary if the system detects a forbidden condition, e.g. if an additional PD source occurs.
References

Andreas Müller, received the Dipl.-Ing. degree in electrical engineering from the University of Stuttgart, Germany, in 2008. In 2009 he started working at the Institute of Power Transmission and High Voltage Technology, University of Stuttgart in the field of power transformer diagnostics. His focus lies in the application of dissolved gas analysis (DGA) and long-term monitoring of partial discharges. He is member of the German Power Engineering Society VDE-ETG.

Michael Beltle, received the Dipl.-Ing. degree in electrical engineering from the University of Stuttgart, Germany, in 2009. After his graduation he started working at the Institute of Power Transmission and High Voltage Technology, University of Stuttgart. He operates in the field of power transformer diagnostics and determines the long-term development of partial discharges and investigates the mechanical vibrations of transformers' active parts. He is member of CIGRE and the German Power Engineering Society VDE-ETG.
Stefan Tenbohlen (M’07) received his Diploma and Dr.-Ing. degrees from the Technical University of Aachen, Germany, in 1992 and 1997, respectively. In 1997 he joined AREVA Schorch Transformatoren GmbH, Monchengladbach, Germany, where he was responsible for basic research and product development and, with this function, he worked in the field of on-line monitoring of power transformers. From 2002 to 2004 he was the head of the electrical and mechanical design department. In 2004, he was appointed as the professor and head of the Institute of Power Transmission and High Voltage Technology of the University of Stuttgart, Germany. In this position, his main research fields are diagnostic of equipment of electrical networks, development of high voltage measurement technique, behavior of gas insulated insulation systems and different aspects of electromagnetic compatibility (EMC). Prof. Tenbohlen holds several patents and published more than 130 papers. He is member of the German committees of CIGRE A2 (Power Transformers), D1 (Emerging Technologies), C4 (System Technical Performance) and several international working groups. Since 2008, he has been a member of the board of the German Power Engineering Society VDE-ETG.