

 International Journal on Electrical Engineering and Informatics - Volume 11, Number 1, March 2019

Bit-Parallelism Score Computation with Multi Integer Weight

Setyorini1,3, Kuspriyanto1, Dwi Hendratmo Widyantoro1, and Adi Pancoro2

1School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia

2School of Life Sciences & Technology, Institut Teknologi Bandung, Indonesia
3School of Computing, Telkom University, Indonesia

Abstract: Dynamic Programming (DP) is still the core algorithm in many biological analysis

tools, especially similarity analysis. DP always promises optimal solutions, but as the size and

number of sequences increase, time performance decreases. This makes various researches

related to the improvement of time performance offered. Performance improvement is offered

by adding process units that work together in parallel environments or reducing the accuracy by

only calculating the input part. Bit-parallelism offers an increase in speed by changing the score

matrix process unit to a larger process unit, namely word. Then this word unit will be processed

in parallel like word processing on a computer system. Bit-parallelism has been successfully

applied to cases with simple weights such as LCS and Edit Distance. Applications in more

complex cases, namely with integer weights also exist, but still assume an integer weight for

match representation. In the case of protein alignment where there is more than one integer value

to represent the match of the residual pair, this solution cannot be applied directly. This paper

presents a preliminary research on how to formulate a computational algorithm score bit-

parallelism with multi-integer weights. The solution offered is the development of General

Integer scoring, by applying functional multi tables. The results show that the algorithm is able

to obtain the same score matrix as the DP score matrix, with computing 𝑂(𝑚), m is size of the

sequence, and 𝑂(𝑏) space where 𝑏 is the range of integer set weights.

Keywords: Sequence Alignment; Dynamic Programming; Bit-Parallelism, General Integer

Scoring.

1. Introduction

 Dynamic Programming (DP) is a classic optimization algorithm for a problem that can be

constructed into sub-problems and can be solved iteratively. All possible sub solutions are visited

in this algorithm, so the guarantee of optimal solutions will always be obtained. The way this

algorithm works becomes a problem when the size and number of sequences increases and

becomes unrealistic at a size large enough.

 Adding a processing unit that is run in parallel is one effort to increase the speed of the

process. The ability to coordinate to get optimal speed is the focus of the parallel process. The

next approach is to tolerate the accuracy. Not all possible solutions are visited, so there is no

guarantee of getting an optimal solution. The best solution is strived to provide the best heuristic

information, so the effort proposed in this approach is an effort to improve the heuristic

information.

 In computer science, sequence alignment is an approximate string-matching problem.

Similarity of a string is measured by the number of edit operations that must be performed to

convert a string into another string. there are 4 techniques for matching strings approximate [1]:

DP, Automaton, Filtering and Bit-parallelism. Automaton represents problems into states and

transitions. Bit-parallelism is a proposed improvement on DP and automaton by parallelizing the

computational process.

 Sequence alignment is an important step in biology to analyze the similarity of biological

sequences such as: DNA or protein. Similarity analysis is useful to determine the relationship

between ancestors or functional similarities. The accuracy of the analysis is determined by the

quality and quantity of data that builds a model of similarity.

 Received: November 15th, 2018. Accepted: February 14th, 2019

 DOI: 10.15676/ijeei.2019.11.1.3

35

 Many sequence alignment devices are available online and offline. A popular sequence

alignment application for searching similarity sequences in a database is BLAST [2] and FAST

[3]. This application offers an approximate solution, the DP algorithm is used to find similarity

in sequence pieces. the best k-pieces become heuristics to build similarities in whole sequences.

There is no guarantee of finding an optimal solution. The initial version of BLAST is said to lose

30% significant sequence. Improvements to BLAST and FASTA were carried out by adopting a

profile search and motif of sequences, namely the conserved area of the sequence that

characterizes a sequence. PSI-BLAST marked conserved positions in the sequence as a guide in

aligning.

 The approach parallels the sequence alignment device: ScanPS [4], ParAlign [5], Both of

them increase speed by parallelizing the Smith-Waterman algorithm and using heuristic help in

accelerating the search for solutions. Another approach by using an embedded graphics

processing unit (GPU), CUDA is offered for pairwise sequence alignment and MSA [6], to

parallel Clustal [7] parallelize MAFFT [8].

 Bit-parallelism provides a different approach, increasing speed while maintaining accuracy.

Bit-parallelism has been successfully applied to string matching cases, such as LCS [8]and Edit

Distance [9]. LCS and Distance Edit use simple weights on Bit-parallelism computing. General

Integer Scoring is a computational score of bit-parallelism for integer weights Loving [10].

Loving assumes an integer weight to represent the same pair of characters. By using the Loving

approach, this paper proposes a computational scheme of Bit-parallelism scores with multi

integer weights. This is an approach to alignment needs with a more complex weight such as

protein.

 The basic material for bit-parallelism computing in general and the general integer scoring

we present in the chapter 2 Solution ideas and mathematical formulations which form the basis

for compiling computational algorithms are presented in the chapter 3, the implementation for

simple case into pseudocode is in the chapter 4, the result in the last chapter.

2. Bit-Parallelism & General Integer Scoring

A. Bit-Parallelism

 Bit-parallelism was first developed for the exact search for sub-simple sub-string patterns

Baeza, Gonet [11]. Whereas for approximate string-matching needs with a maximum error k,

with the concept of finite automaton, with the regular expression Wu Mamber. The value of k is

calculated from the number of substituted operations or inserted / deleted to convert one string

to another. The representation of the score matrix in the form of neighboring matrix cell

differences is proposed by Myer [12], computation is proposed in an iterative column for simple

problem string matching. Navaro [1] proposes integer weights for each substitution condition,

insert or delete to find the regular expression occurrence that has the maximum edit weight

number k.

 The implementation of Bit-parallelism in the case of Longest Common Subsequence (LCS)

was proposed by Allison, Dix [13], representing the vertical difference vector of the score matrix

and running algorithm iterations based on columns. As the initialization stage, the masking bit

is filled with match position status, vertical difference vector in column 0 is filled with gap

weight value. This algorithm uses a reduction operation for iterations per column. Chrochemore

[14], with the CIPR algorithm using the principle of partial order relations to manipulate the

match set (k-dominant match). LCS problems are defined as whole k-dominant match

computing. CIPR uses the add operation as a substitute for subtract operations per column. Hyro

[8] improved CIPR by limiting the seasrch area around diagonally.

 The implementation of Bit-parallelism in the simple edit distance by Hyrro & Navaro (2005,

Hyrro et all (2005), by making changes to Myer's proposal [12]. Iterative computed algorithms

per column, using boundaries on diagonal areas applied to bit-parallelism with cut -off.

Setyorini, et al.

36

B. General Integer Scoring

 General Integer Scoring applies a general bit-parallelism computing scheme to integer

weights. This algorithm is proposed by Loving [10]. The algorithm assumes there are 1 integer

weights for 3 conditions (match, mismatch and gap insertion / deletion). Loving identifies the

dependencies of vertical differences between columns. Through the equation of the similarity

function for filling the score matrix, the relationship of a vertical difference value to the vertical

difference of the previous column and horizontal difference in the previous row. All possible

integer values identified are then mapped in a functional table. This functional table states that

there is a dependence on the appearance of an integer value from another integer value, whose

appearance can be represented in a logical relationship.

 The score computation algorithm is formed from the relation of the functional table. Based

on the functional table, computing starts from an integer value with the least number of

dependencies, namely the largest integer, then a smaller value and so on until the biggest negative

value is the gap weight. There is a propagation pattern horizontally when the value of the

maximum value appears. This pattern appears because the score function will tend to choose the

largest value. Based on the equation obtained there is a relationship between horizontal values

with vertical values. Horizontal difference values are obtained from transpose in the input

sequence.

3. Desain Multi Integer Computation

A. Similarity Function

 Taking into account the above case example protein sequence alignment where there is a

group of protein residues that have a degree of similarity, it is interpreted that there are more

than 1 positive values for some match conditions. Thus, we can consider the similarity function

for match and mismatch as an R value, so that the similarity function equation becomes:

Definition 1 : If there are two sequences 𝑆1 and 𝑆2, of length 𝑚 and 𝑛 repectively, and the set of

weight match/mismatch = 𝑅 and insertion/deletion gap = 𝐺, the similiarity function 𝐷𝑖,𝑗

defined as

 ∀ 𝑖 ∈ {𝑖, … , 𝑛}, ∀ 𝑗 ∈ {1, … ,𝑚}

 𝐷𝑖,𝑗 = 𝑚𝑎𝑥 ((𝐷𝑖,𝑗 = 𝐷𝑖−1,𝑗−1 + 𝑅), (𝐷𝑖,𝑗 = 𝐷𝑖−1,𝑗 + 𝐺), (𝐷𝑖,𝑗 = 𝐷𝑖,𝑗−1 + 𝐺)) (1)

 R is the value obtained from the reference table, while G is the weight representation for the

insertion of the gap. Referring to the difference equation from Myer [12], we can write the

horizontal and vertical difference equations of a matrix cell D to the surrounding cells, as

follows:

 Horizontal difference : ∆𝐻(𝑖, 𝑗) = 𝐷(𝑖, 𝑗) − 𝐷(𝑖, 𝑗 − 1) (2)

 Vertikal difference : ∆𝑉(𝑖, 𝑗) = 𝐷(𝑖, 𝑗) − 𝐷(𝑖 − 1, 𝑗)

 The writing of the score matrix then uses the score matrix difference cell value, then using

equations 1), and 2) the equation value ∆𝑉(𝑖, 𝑗) is defined from its adjacent difference value.

In match or mismatch conditions, it can be illustrated as follows:

X Y

Z X+R

∆V(i,j)

∆H(i-1,j)

∆H(i,j)

∆V(i,j-1) S(i-1,j-1) S(i-1,j)

S(i,j)S(i,j-1)

Figure 1. Illustration of the contents of the score matrix 𝐷(𝑖, 𝑗)

on match or mismatch conditions

Bit-Parallelism Score Computation with Multi Integer Weight

37

 The value of the matrix cell 𝐷(𝑖, 𝑗), is determined by 3 values positions, namely 𝐷(𝑖 − 1, 𝑗 −
1), 𝐷(𝑖 − 1, 𝑗) and 𝐷(𝑖, 𝑗 − 1). If it is assumed that the values in each position are X, Y and Z,

then the match / mismatch condition will occur,

 (𝑋 + 𝑅 > 𝑍 + 𝐺) & (𝑋 + 𝑅 > 𝑌 + 𝐺) (3)

The maximum value option is in the match or mismatch condition 𝐷(𝑖, 𝑗) = 𝑋 + 𝑅 =
𝐷(𝑖 − 1, 𝑗 − 1) + 𝑅. Bit-parallelism utilizes iterative computation of horizontal and vertical

difference values so that the vertical difference obtained from equations 2) becomes:

 ∆𝑉(𝑖, 𝑗) = 𝑅 − ∆𝐻(𝑖 − 1, 𝑗) (4)

Whereas for requirement 3) if the match condition occurs if given algebraic manipulation

(subtracted by Y) it will get the difference of R with G against ∆𝐻(𝑖, 𝑗 − 1) and ∆𝑉(𝑖, 𝑗 − 1)

 𝑅 − 𝐺 > ∆𝐻(𝑖 − 1, 𝑗) and 𝑅 − 𝐺 > ∆𝑉(𝑖, 𝑗 − 1) (5)

The visualization when the score matrix is filled with the value of upper gap insertion is as

follows

X Y

Z Y+G

∆V(i,j)

∆H(i-1,j)

∆H(i,j)

∆V(i,j-1) S(i-1,j-1) S(i-1,j)

S(i,j)S(i,j-1)

X Y

Z Z+G

∆V(i,j)

∆H(i-1,j)

∆H(i,j)

∆V(i,j-1) S(i-1,j-1) S(i-1,j)

S(i,j)S(i,j-1)

(a) (b)

Figure 2. Illustration of the contents of the score matrix 𝐷(𝑖, 𝑗)
on upper (a) & left (b) gap insertion conditions

 Figure 2 illustrates the conditions in which the gap is inserted from above (a) and the insertion

gap from the left (b). At the insertion gap from above, score matrix cell 𝐷(𝑖, 𝑗) and the vertical

difference contains (𝑖, 𝑗) = 𝑌 + 𝐺.

 ∆𝑉(𝑖, 𝑗) = (𝑌 + 𝐺) − 𝑌 = 𝐺. (6)

These conditions can occur with the following conditions:

 (𝑌 + 𝐺 > 𝑋 + 𝑅) & (𝑌 > 𝑍) (7)

by modifying equation (7), (𝑌 + 𝐺 > 𝑋 + 𝑅) by reducing each side by X, then moving the side,

and subtracting the equation 𝑌 > 𝑍 with 𝐷(𝑖 − 1, 𝑗 − 1), then we obtained:

 𝑅 − 𝐺 < ∆𝐻(𝑖 − 1, 𝑗) and 𝐷𝐻(𝑖 − 1, 𝑗) > ∆𝑉(𝑖, 𝑗 − 1) (8)

 Left gap insertion will make the score matrix cell 𝐷(𝑖, 𝑗) will contains 𝐷(𝑖, 𝑗) = 𝐷(𝑖, 𝑗 −
1) + 𝐺, reduce both sides by 𝐷(𝑖 − 1, 𝑗), then by adding 𝐷(𝑖 − 1, 𝑗 − 1) − 𝐷(𝑖 − 1, 𝑗 − 1)
causing the equation to be:

 ∆𝑉(𝑖, 𝑗) = ∆𝑉(𝑖, 𝑗 − 1) + 𝐺 − ∆𝐻(𝑖 − 1, 𝑗) (9)

Setyorini, et al.

38

the requirement to choose the value from 𝐷(𝑖, 𝑗 − 1)

 (𝑍 + 𝐺 > 𝑋 + 𝑅) & (𝑍 > 𝑌) (10)

 To form a horizontal or vertical difference, then the two sides of the initial equation above

are reduced by X, and rearranging the side of the equation then subtracting both sides with

𝐷(𝑖 − 1, 𝑗 − 1), then we got

 𝑅 − 𝐺 < ∆𝑉(𝑖, 𝑗 − 1) and ∆𝑉(𝑖, 𝑗 − 1) > ∆𝐻(𝑖 − 1, 𝑗) (11)

Summarizing all the vertical difference equations and their respective requirements, can be

written as follows

∆𝑉(𝑖, 𝑗)

=

{

 𝑅 − ∆𝐻(𝑖 − 1, 𝑗) 𝑖𝑓 (((𝑅 − 𝐺) ≥ ∆𝐻(𝑖 − 1, 𝑗))&((𝑅 − 𝐺) ≥ ∆𝑉(𝑖, 𝑗 − 1))

𝐺 𝑖𝑓 (((𝑅 − 𝐺) > ∆𝐻(𝑖 − 1, 𝑗))&(∆𝐻(𝑖 − 1, 𝑗) ≥ ∆𝑉(𝑖, 𝑗 − 1)))

∆𝑉(𝑖, 𝑗 − 1) + 𝐺 − ∆𝐻(𝑖 − 1, 𝑗) 𝑖𝑓 ((((𝑅 − 𝐺) > ∆𝑉(𝑖, 𝑗 − 1))&(∆𝑉(𝑖, 𝑗 − 1) > ∆𝐻(𝑖 − 1, 𝑗)))

B. Mapping the Integer Value Relationship

 From the resume of the equation above it is obtained that ∆𝑉(𝑖, 𝑗) is determined by ∆𝑉(𝑖, 𝑗 −
1), ∆𝐻(𝑖 − 1, 𝑗) and R. Furthermore, this relationship is translated in logical relations. Logic

relations represent the logical relationship between its variable. Variables are the boolean status

of the existence of the integer value (in binary). Variables area created for all integer value on

range [maximum integer, minimum integer]. For a set of integer weights 𝑊𝑖 , i is 1..b, the

maximum integer = max(𝑊𝑖) − 𝐺 , and the minimum = G. Logic relations between the integer

variables are mapped in a functional-table. Tables are formed for each 𝑊𝑖, so there will be b

functional tables created. Next we solved the multi integer weight with the multi-functional

tables.

 Almost all table content has 3 area, except for tables of maximum weight. Unlike the single

functional table, the multi-functional table combines the match area with mismatch into a

diagonal area. A functional table has the left gap insertion area only if the table is not derived

from the maximum weight. The insertion of the gap from the left occurs in two conditions: match,

or meet a greater weight, as an impact of these two conditions there is a value propagation. Multi-

functional table content has the pattern shown as follows:

G GMax Max

Max Max

Max Max

Max Max

GG G
G

G
G

𝑊1 𝑊2 𝑊𝑏 𝑊𝑏−1

Diagoal

Left Gap

Upper Gap Diagoal

Diagoal

Left Gap

Left Gap

Diagoal

Upper Gap

U
p

p
e

r
G

a
p

...

Figure 3. Pattern of multi-functional table for a set weights, with range weight [𝑊1,𝑊𝑏]

 The greater the weight value, the wider the diagonal area and reduce the left gap and upper

gap area. At the maximum weight, there is no longer a value greater than this weight, so there is

no possibility of inserting a gap from the left.

3. Desain Algorithm.

A. Operation in Single-Functional Table

 The main problem of computing the bit-parallelism score is how is the relationship between

the 𝐷𝑉(𝑖, 𝑗 − 1) variable with 𝐷𝐻(𝑖 − 1, 𝑗) in the functional table, can be computed in parallel

Bit-Parallelism Score Computation with Multi Integer Weight

39

and iterative. We got 𝐷𝐻(𝑖 − 1, 𝑗) values, from the previous row, while the 𝐷𝑉(𝑖, 𝑗 − 1) values

from the left shifted current DV. Identify the logical relation of an integer value can be ilustrated

as the process of getting an index of the integer contain from a look-up table. We got the pair

index 𝐷𝑉(𝑖, 𝑗 − 1) and 𝐷𝐻(𝑖 − 1, 𝑗) for each integer value position, and labeled the position as

AND operation between the pair index. When the integer appear on several positions, the multi

-pair this united by logical OR operations.

 Iteration start with the vertical difference value, then the horizontal one. Horizontal difference

value is obtained after vertical difference computing. The horizontal operation to obtain this

value is like reading a functional anti-lookup table, with transpose input sequences. Computing

starts from the biggest value, because it has the smallest level of dependency, or the least

computational requirements, and then iteratively followed by computation of values that are less

than maximum integer value.

 The maximum integer propagation could not identify through the indeks of functional table,

it need special treatment because the propagation even depend on the sequence position of

integer value. Propagation happened when a integer x followed by the other integer less than x.

To handle the maximum propagation even in parallel way, we adoting Myer’s technique [12] :

handling carry in addition operation. In addition operation when carry come up then the carry

will continue to propagate there are no more carry found.

B. Operation in Multi- Functional Table

 Multi-Functional Tables are operated on character pairs according to their weight values. In

each row the computation will be written for the active/used functional tables, based on the

weights. In comparing a character pair there is only 1 functional table that is active. The

functional table used for each position is obtained by AND operation with the weight position.

The location of the weights is identified at the preprocessing stage. We integrate all functional

tables with logical OR operations

 As in the single functional table, the representation and identification of the position of

weights are carried out at the preprocessing stage. Representation and identification of weight

positions adjust computational iterations. Representation of the position of weights identified as

many integer values of different weights. The weight position of representation is then stored in

an integer value. Some illustration of weight representation is in figure 4.

𝑆12
 𝑆13

 𝑆14
 𝑆15

 𝑆16
 𝑆1𝑛 ...

𝑊1

𝑆11

𝑊2

𝑊3

𝑊𝑏

...

A
CG

T

Figure 4. Illustration of the weight set representation for

 Figure 4 showed when there are only four possibility character that is used in a sequence,

such as DNA character. The match positin will be store in 3 tuple : (𝑖, 𝑐ℎ𝑎𝑟,𝑊𝑗) , 𝑖 for row

identification, char for each possible character and 𝑊𝑗 for the each integer in set of weights.

C. Algorithm

 Algorithm for bit-parallelism using multi-integer weight constructed from the computational

analysis of multi-functional tables. The logical relation between the integer value identified from

all functional tables. Starting from the largest integer (maximum integer value) value formed

from the set of weights: max(𝑊𝑖) − 𝐺, up to the minimum value, namely G. Computing for an

integer value is seen from the position of the value on each functional table. Starting from the

Left Gap area, then the Diagonal area and finally the Upper Gap area.

Setyorini, et al.

40

Step 1: Maximum Vertical Difference variable ∆𝑽 = max Identification

G GMax Max

Max Max

Max

Max

GG G
G

𝐷𝑉𝑀𝑎𝑥 = | | | ...

𝑊1 𝑊2 𝑊𝑏

0

𝑆11
 𝑆12

 𝑆13
 𝑆14

 𝑆15
 𝑆16

 𝑆17
 𝑆18

 𝑆1𝑛

1 1 0 1 0 0 0 0
𝑊1

1 0 0 0 1 1 0 1 0
𝑊2

1 1 0 1 1 1 0 1 0
𝑊𝑏

...

...

𝑊1 𝐷𝐻𝑚𝑖𝑛 𝐷𝑉𝑚𝑎𝑥 & & 𝑊2 𝐷𝐻𝑚𝑖𝑛 𝐷𝑉𝑚𝑎𝑥 & & 𝑊𝑏 𝐷𝐻𝑚𝑖𝑛 &

...

Figure 5. Illustration of the integer maximum value for all possible weights.

 The maximum value is the largest integer of the functional table. Maximum value =

max (𝑊𝑖) − 𝐺. The maximum integer is located in the most left column, the minimum integer of

horizontal difference. The illustration in the figure 5. shows the location of the maximum integer

value on each functional table. One functional table represents one integer weight W. The set of

weights consists of [𝑊1,𝑊𝑏], where 𝑊𝑏 is the maximum value of the set of weights. The location

of the integer value is indicated in the shaded area. As in a single functional table operation, the

position of the maximum integer value is identified such as finding the loop-up index of the table

in each table. Then each row and column index are operated by an AND operation, and all

functional table indexes are summarized by OR operations.

 There are all maximum integer value in minimum horizontal differece colum at maximum

weight table functional. Logical operations for maximum integer values in the functional table

with the greatest weight (𝑊𝑏) being as follows

 𝐷𝑉𝑚𝑎𝑥 = 𝐷𝐻𝑚𝑖𝑛

while for the functional table with weight < 𝑊𝑏 has the following logical relations

 𝐷𝑉𝑚𝑎𝑥 = 𝐷𝐻𝑚𝑖𝑛 & 𝐷𝑉𝑚𝑎𝑥

The logical operation to integrate all functional tables is

𝐷𝑉𝑚𝑎𝑥 = (𝑊1 |𝑊2|𝑊3… 𝑊𝐵−1)& (𝐷𝐻𝑚𝑖𝑛 & 𝐷𝑉𝑚𝑎𝑥)|(𝐷𝐻𝑚𝑖𝑛 & 𝑊𝐵)

 Propagation handling is also needed in multi-functional tables which also adopt carry

handling operations in addition operations, with ADD and XOR operations. There is only one

integer propagation that occurs on each row, i.e start from the the largest value position into the

end of position score matrix.

𝐷𝑉𝑚𝑎𝑥𝑆ℎ𝑖𝑓𝑡 = (𝐷𝑉𝑚𝑎𝑥 + 𝐷𝐻𝑚𝑖𝑛)^𝐷𝐻𝑚𝑖𝑛^𝐷𝑉𝑀𝑎𝑥

The remaining computation of the bit position after being used to position the maximum integer

value and its propagation is as follows:

𝑅𝑒𝑚𝑎𝑖𝑛𝐷𝐻𝑚𝑖𝑛 = 𝐷𝐻𝑚𝑖𝑛^(𝐷𝑉𝑚𝑎𝑥 ≫ 1)

Bit-Parallelism Score Computation with Multi Integer Weight

41

Step 2: Left Gap and Diagonal Vertical Difference Integer Identification

 The next analysis is the position of the integer value in the functional table which is greater

than the minimum integer value and less than maximum integer value. There are two possible

positions of integer values as illustrated in the figure 6. The position in the Left Gap area only

(green) and in some areas of the Left Gap is also the Diagonal area (red).

G
G

R-G

M-G

R-G M-G

Left Gap

Diagonal Upper
Gap

∆H(i-1,j)

∆V(i,j-1)

Figure 6. Illustration of the integers value < integer max for Left Gap area and Upper Gap area.

 The operation logic for positions only in green occurs to the integer values represent with 𝑥,
(min(𝑊𝑖) − 𝐺) < 𝑥 < max (𝑊𝑖 − 𝐺), where i represents for all integer weight. The logic

relations for only Left Gap area in a functional table are as follows

𝐷𝑉𝑥 = ((𝐷𝑉𝑚𝑎𝑥 &𝐷𝐻𝑚𝑖𝑛+(𝑚𝑎𝑥−𝑥))| (𝐷𝑉𝑚𝑎𝑥−1& 𝐷𝐻𝑚𝑖𝑛+(𝑚𝑎𝑥−𝑥−1)|𝐷𝑉𝑚𝑎𝑥−2&𝐷𝐻𝑚𝑖𝑛+(𝑚𝑎𝑥−𝑥−2)| …

… |(𝐷𝑉𝑥&𝐷𝐻𝑚𝑖𝑛)
while for red computing location consists of green computing by adding logical OR operations

for all 𝐷𝑉(𝑅−𝐺) until 𝐷𝑉𝑚𝑖𝑛, so that the complete computing becomes

𝐷𝑉𝑥 = ((𝐷𝑉𝑚𝑎𝑥 &𝐷𝐻𝑚𝑖𝑛+(𝑚𝑎𝑥−𝑥))| …

… |(𝐷𝑉𝑅−𝐺+1&𝐷𝐻(𝑅−𝐺+1)−(𝑥−𝑚𝑖𝑛))|((𝐷𝑉𝑅−𝐺| … |𝐷𝑉𝑚𝑖𝑛)&𝐷𝐻((𝑅−𝐺+1)−(𝑥−𝑚𝑖𝑛))+1

 Each functional table has differerent green and red area pattern. Computation of an integer x

contruct by joining all tabel functional with logical operation OR. Illustrations for all functional

tables are as figure 7.

Figure 7. Illustration of the integers value < integer max for Left Gap area

and Upper Gap area for all functional table.

G GMax Max

Max Max Max

Max Max

Max Max

GG G
G

G
G

𝑊1 𝑊2 𝑊𝑏 𝑊𝑏−1

...

0

𝑆11
 𝑆12

 𝑆13
 𝑆14

 𝑆15
 𝑆16

 𝑆17
 𝑆18

 𝑆1𝑛

1 1 0 1 0 0 0 0𝑊1

1 0 0 0 1 1 0 1 0𝑊2

1 1 0 1 1 1 0 1 0𝑊𝑏

...

...

𝐷𝑉𝑀𝑎𝑥−1 = 𝑊1 𝐷𝐻𝑚𝑖𝑛 𝐷𝑉𝑚𝑎𝑥 −1 & & 𝐷𝐻𝑚𝑖𝑛 −1 𝐷𝑉𝑚𝑎𝑥 & | 𝑊2 𝐷𝐻𝑚𝑖𝑛 𝐷𝑉𝑚𝑎𝑥 −1 & & 𝐷𝐻𝑚𝑖𝑛 −1 𝐷𝑉𝑚𝑎𝑥 & |

𝑊𝑏 𝐷𝐻𝑚𝑖𝑛 &

| |

𝑊𝑏−1 𝐷𝐻𝑚𝑖𝑛 ~(𝐷𝑉𝑚𝑎𝑥) & & 𝐷𝐻𝑚𝑖𝑛 −1 𝐷𝑉𝑚𝑎𝑥 & | |

Setyorini, et al.

42

 All computations of vertical difference variables require the form of 𝐷𝑉(𝑖, 𝑗 − 1) so that the

variable content is shifted one bit to the left.

 𝐷𝑉𝑥𝑆ℎ𝑖𝑓𝑡 = ((𝐷𝑉𝑥 ≪ 1) + 𝑅𝑒𝑚𝑎𝑖𝑛𝐷𝐻𝑚𝑖𝑛)^𝑅𝑒𝑚𝑎𝑖𝑛𝐷𝐻𝑚𝑖𝑛

Handling the propagation of values is applied to each integer value (𝑊𝑖 −
𝑔𝑎𝑝_𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛_𝑤𝑒𝑖𝑔ℎ𝑡), 𝑖 > 0, because the propagation will occur when this positive integer

value appears in a row computing i iteration.

Step 3: minimum vertical difference ∆𝑽 = 𝑫𝑽𝒎𝒊𝒏 identification

The last computation of the vertical difference is DVmin. DVmin is obtained from the remain of

all positions greater than DHmin.

𝐷𝑉𝑚𝑖𝑛 = 𝑎𝑙𝑙_𝑜𝑛𝑒𝑠^(𝐷𝑉𝑚𝑎𝑥𝑆ℎ𝑖𝑓𝑡|𝐷𝑉𝑚𝑎𝑥−1𝑆ℎ𝑖𝑓𝑡|𝐷𝑉𝑚𝑎𝑥−2𝑆ℎ𝑖𝑓𝑡|… |𝐷𝑉𝑚𝑖𝑛+1)

Step 4: horizontal difference DH identification

Horizontal difference computing uses the same principle as a functional single table.

𝐺𝑟𝑜𝑢𝑝 = ~(𝐷𝐻𝑚𝑎𝑥|𝐷𝐻𝑚𝑎𝑥−1|𝐷𝐻𝑚𝑎𝑥−2)
𝐷𝐻𝑥 = (𝐷𝐻𝑚𝑎𝑥 &𝐷𝑉𝑥)|(𝐷𝐻𝑚𝑎𝑥−1&𝐷𝑉𝑥−1)|(𝐷𝐻𝑚𝑎𝑥−2 &𝐷𝑉𝑥−2)|(𝐺𝑟𝑜𝑢𝑝 & 𝐷𝑉𝑥−3)

∆V(i,j-1)

DHn

DVmin

DVmax

DHmax

Left Gap

Diagonal Upper
Gap

∆H(i-1,j)

DVp-2

DVp-1

DVp

DVp-3

DVp-3

DVp-3

DVp-3

DVp-3

DVmax-1

DVmax-2

DVmin+1

DVmin+2

DVmin+3

DVmin+4

DHmin

Figure 8. Illustration of Horizontal Difference computation

Take it all the analytical computation into an complete algorithm we get

Algorithm 1. Multi Integer Preprocessing (𝑆1, 𝑛, 𝑊𝑠, 𝑟𝑒𝑓_𝑤𝑒𝑖𝑔ℎ𝑡[𝑐ℎ𝑎𝑟𝑠][𝑐ℎ𝑎𝑟𝑠], 𝑐ℎ𝑎𝑟𝑠) →

𝑣𝑒𝑐𝑡𝑜𝑟_𝑚𝑎𝑡𝑐ℎ[𝑐ℎ𝑎𝑟𝑠][𝑊𝑠]
1. 𝑖𝑡𝑒𝑟𝑎𝑡𝑒 ← 𝑆1

2. 𝑏𝑖𝑡𝑚𝑎𝑠𝑘 ← 0000000000000001;

3. for 𝑗 = 1: 𝑛 j do

4. 𝑖𝑑𝑥_𝑤 ← 𝑟𝑒𝑓_𝑤𝑒𝑖𝑔ℎ𝑡[𝐼𝑡𝑒𝑟𝑎𝑡𝑒][𝑐ℎ𝑎𝑟𝑠];
5. 𝑣𝑒𝑐𝑡𝑜𝑟_𝑚𝑎𝑡𝑐ℎ[𝑐ℎ𝑎𝑟𝑠][𝑖𝑑𝑥_𝑤] = 𝑣𝑒𝑐𝑡𝑜𝑟_𝑚𝑎𝑡𝑐ℎ[𝑐ℎ𝑎𝑟𝑠][𝑖𝑑𝑥_𝑤]|𝑏𝑖𝑡𝑚𝑎𝑠𝑘 ;

6. 𝑏𝑖𝑡𝑚𝑎𝑠𝑘 ≪ 1; 𝑖𝑡𝑒𝑟𝑎𝑡𝑒 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑒 + 1;

7. end for

Algorithm 1 is a preprocessing that produces a vector match for all possible characters in

sequence (𝑐ℎ𝑎𝑟𝑠) and for all integer weights (𝑟𝑒𝑓_𝑤𝑒𝑖𝑔ℎ𝑡). Algorithms require sequence 1 input

as a reference sequence of parallel row operations and integer weights reference table. Reference

Table integer weights contain weights for matching character pairs. The vector match has

dimensions equal to the character list and integer weights.

Bit-Parallelism Score Computation with Multi Integer Weight

43

Computing preprocessing requires an iteration of a number of characters in sequence reference

(S1), with length n, for each possible character in the character set. Computational results are

stored in an integer vector. Computing requires 𝑂(𝑛) time for preprocessing and has the same

space for the same character set and integer set weights.

Algorithm 2. Multi-Integer Score Computation (𝑆2, 𝑚, 𝑣𝑒𝑐𝑡𝑜𝑟_𝑚𝑎𝑡𝑐ℎ) : 𝐷𝑉𝑠, 𝐷𝐻𝑠
1. for 𝑖 = 1:𝑚 do

2. 𝐷𝑉𝑚𝑎𝑥 ← Compute Maximum Vertical Diff. Integer Variable (𝑣𝑒𝑐𝑡𝑜𝑟_𝑚𝑎𝑡𝑐ℎ, 𝐷𝑉𝑠, 𝐷𝐻𝑠)
3. 𝐷𝑉𝑠 ← Compute Left Gap Only Vertical Diff. Integer Variables (𝑣𝑒𝑐𝑡𝑜𝑟_𝑚𝑎𝑡𝑐ℎ, 𝐷𝑉𝑠, 𝐷𝐻𝑠)
4. 𝐷𝑉𝑠 ← Compute Left Gap and Diagonal Vertical Diff. Integer Variables (𝑣𝑒𝑐𝑡𝑜𝑟_𝑚𝑎𝑡𝑐ℎ, 𝐷𝑉𝑠, 𝐷𝐻𝑠)
5. 𝐷𝑉𝑚𝑖𝑛 ← Computer Minimum Vertical Diff. Integer Variable (𝑣𝑒𝑐𝑡𝑜𝑟_𝑚𝑎𝑡𝑐ℎ, 𝐷𝑉𝑠, 𝐷𝐻𝑠)
6. 𝐷𝐻𝑠 ← Computer Horizontal Diff. Variables (𝑣𝑒𝑐𝑡𝑜𝑟_𝑚𝑎𝑡𝑐ℎ, 𝐷𝑉𝑠, 𝐷𝐻𝑠)
7. end for

Algorithm 2 produces a matrix score in the form of vertical and horizontal differences. Iterations

are carried out per row as many characters as in sequence 2. The computational sequence starts

from the computation of the vertical difference then computes the horizontal difference. In

accordance with the relationship in the functional table, then for vertical differences stored in the

form of shifted 1 bit to the left.

Computational matrix scores in the form of vertical and horizontal differences require time 𝑂(𝑚)
and 𝑂(𝑏), where 𝑚 is the length of sequence 2 and 𝑏 is the integer range of the highest integer

weight with the lowest integer weight. Logic relations algorithms are built by the given set of

weights, different sets of weights will generate different algorithms.

4. Implementation

 In the implementation example is given with a simple set of weights applied to DNA.

According to the Nucleotide 44 reference table, DNA has a set of weights that are different match

= 5, mismatch = -4 and insertion gap = -8. For this implementation we choose the simplest set

weights for simplify ilustration. Given two different match weights, then a mismatch weight and

a gap insertion weight. Weight of pairs (A, A) and (C, C) = 2, while (G, G) and (T, T) = 1,

mismatch = -1 and insertion gap = -2.

 By using the weighting attributes before, we have the integer range is [-2.4]. Vertical and

horizontal integer variables formed are as much as the maximum and minimum value difference

= 4 - (- 2) + 1 = 7. Integer variables for vertical differences are: DVp4, DVp3, DVp2, DVp1, DVz,

DVn1, DVn2. Horizontal difference integer variables are: DHp4, DHp3, DHp2, DHp1, DHz,

DHn1 and DHn2.

The functional table formed for the above 3 weights (2.1, -1) is as follows:

Figure 9. Illustration of multi-functional table from weight set (A,A) = (C,C) = 2, (G,G) =

(T,T) = 1, mismatch = -1 and insertion gap = -2.

 Computational algorithms with logical relations develop into 5 part : (1) compute maximum

integer DV; (2) compute the DV Left Gap area only : integer positive 3 and integer positive 2;

(3) compute DV Left Gap and DV Diagonal area : integer positive 1, zero and negative 1; (4)

W = -1 DH(i-1,j) W = 1 DH(i-1,j) W = 2 DH(i-1,j)

-2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4

-2 1 0 -1 -2 -2 -2 -2 -2 3 2 1 0 -1 -2 -2 -2 4 3 2 1 0 -1 -2

-1 1 0 -1 -2 -2 -2 -2 -1 3 2 1 0 -1 -2 -2 -1 4 3 2 1 0 -1 -2

0 1 0 -1 -2 -2 -2 -2 0 3 2 1 0 -1 -2 -2 0 4 3 2 1 0 -1 -2

DV(i,j-1) 1 1 0 -1 -2 -2 -2 -2 DV(i,j-1) 1 3 2 1 0 -1 -2 -2 DV(i,j-1) 1 4 3 2 1 0 -1 -2

2 2 1 0 -1 -2 -2 -2 2 3 2 1 0 -1 -2 -2 2 4 3 2 1 0 -1 -2

3 3 2 1 0 -1 -2 -2 3 3 2 1 0 -1 -2 -2 3 4 3 2 1 0 -1 -2

4 4 3 2 1 0 -1 -2 4 4 3 2 1 0 -1 -2 4 4 3 2 1 0 -1 -2

Setyorini, et al.

44

minimum integer DV; (5) compute the integer DH : integer positive 4, positive 3, positive 2,

positive 1, zero, negative 1 and negative 2.

Algorithm 3 : Multi-Integer 21𝑚1𝑚2 Score Computation

(𝑆2, 𝑚, 𝑣𝑒𝑐𝑡𝑜𝑟_𝑚𝑎𝑡𝑐ℎ): 𝐷𝑉4, 𝐷𝑉3, 𝐷𝑉2, 𝐷𝑉1, 𝐷𝑉0, 𝐷𝑉−1, 𝐷𝑉−2, 𝐷𝐻4, 𝐷𝐻3, 𝐷𝐻2, 𝐷𝐻1, 𝐷𝐻0, 𝐷𝐻−1, 𝐷𝐻−2

 1. for 𝑗 = 1:𝑚 do

 // (1) compute DVmax

 2. 𝐼𝑛𝑖𝑡𝐷𝑉4 = (𝑊−1 |𝑊1)& (𝐷𝐻−2 & 𝐷𝑉4)|(𝐷𝐻−2 & 𝑊2)
 3. 𝐷𝑉4𝑆ℎ𝑖𝑓𝑡 = (𝐼𝑛𝑖𝑡𝐷𝑉4 + 𝐷𝐻−2)^𝐷𝐻−2^𝐼𝑛𝑖𝑡𝐷𝑉4

 4. 𝑅𝑒𝑚𝑎𝑖𝑛𝐷𝐻−2 = (𝐷𝐻−2 & 𝐷𝑉4) ≫ 1

 5. 𝐷𝑉4𝑆ℎ𝑖𝑓𝑡𝑂𝑟𝑀𝑎𝑡𝑐ℎ = 𝐷𝑉4𝑆ℎ𝑖𝑓𝑡 | 𝑊2

 // (2) compute DV in Left Gap area only : DVp3 & DVp2

 6. 𝐷𝑉3 = (𝐷𝐻−2 & 𝑊2)| ((𝐷𝐻−2 & ~(𝐷𝑉4))|((𝐷𝐻−1 & 𝐷𝑉4))&𝑊1)|

 ((𝐷𝐻−1 & 𝐷𝑉4𝑆ℎ𝑖𝑓𝑡𝑂𝑟𝑀𝑎𝑡𝑐ℎ)|(𝐷𝐻−2 & 𝐷𝑉3))&𝑊−1

 7. 𝐷𝑉3𝑆ℎ𝑖𝑓𝑡 = (𝐷𝐻−2 + 𝐷𝑉3)^𝐷𝐻−2^𝐷𝑉3

 8. 𝐷𝑉3𝑆ℎ𝑖𝑓𝑡𝑂𝑟𝑀𝑎𝑡𝑐ℎ = 𝐷𝑉3𝑆ℎ𝑖𝑓𝑡 | 𝑊1

 9. 𝐷𝑉2 = (𝐷𝐻𝑧 & 𝑊2)| (𝐷𝐻−1 & 𝑊1)|
 ((𝐷𝐻𝑧 & 𝐷𝑉4𝑆ℎ𝑖𝑓𝑡𝑂𝑟𝑀𝑎𝑡𝑐ℎ)|(𝐷𝐻−1 &𝐷𝐻3𝑆ℎ𝑖𝑓𝑡𝑂𝑟𝑀𝑎𝑡𝑐ℎ)|(𝐷𝐻−2 & 𝐷𝑉2))&𝑊−1)
10. 𝐷𝑉2𝑆ℎ𝑖𝑓𝑡 = ((𝐷𝑉2 ≪ 1) + 𝑅𝑒𝑚𝑎𝑖𝑛𝐷𝐻−2)^𝑅𝑒𝑚𝑎𝑖𝑛𝐷𝐻−2

11. 𝐷𝑉2𝑆ℎ𝑖𝑓𝑡𝑁𝑜𝑡𝑀𝑎𝑡𝑐ℎ = (𝐷𝑉2𝑆ℎ𝑖𝑓𝑡 & ~(𝑊2|𝑊1))

12. // (3) compute DV in Left Gap & Diagonal area : DVp1, DVz, DVn1

13. 𝐷𝑉1 = (𝐷𝐻1 & 𝑊2)| (𝐷𝐻𝑧 & 𝑊1)|
 ((𝐷𝐻−2 & ~(𝐷𝑉4𝑆ℎ𝑖𝑓𝑡𝑂𝑟𝑀𝑎𝑡𝑐ℎ | 𝐷𝑉3𝑆ℎ𝑖𝑓𝑡𝑂𝑟𝑀𝑎𝑡𝑐ℎ | 𝐷𝑉2𝑆ℎ𝑖𝑓𝑡))|
 (𝐷𝐻1 &𝐷𝑉4𝑆ℎ𝑖𝑓𝑡𝑂𝑟𝑀𝑎𝑡𝑐ℎ)| (𝐷𝐻𝑧 & 𝐷𝑉3𝑆ℎ𝑖𝑓𝑡𝑂𝑟𝑀𝑎𝑡𝑐ℎ)|
 (𝐷𝐻−1 & 𝐷𝑉2𝑆ℎ𝑖𝑓𝑡𝑁𝑜𝑡𝑀𝑎𝑡𝑐ℎ))&𝑊−1)

14. 𝐷𝑉1𝑆ℎ𝑖𝑓𝑡 = 𝐷𝑉1 ≪ 1

15. 𝐷𝑉𝑧 = (𝐷𝐻2 & 𝑊2)| (𝐷𝐻1 & 𝑊1)|
 ((𝐷𝐻−1 & ~(𝐷𝑉4𝑆ℎ𝑖𝑓𝑡𝑂𝑟𝑀𝑎𝑡𝑐ℎ | 𝐷𝑉3𝑆ℎ𝑖𝑓𝑡𝑂𝑟𝑀𝑎𝑡𝑐ℎ | 𝐷𝑉2𝑆ℎ𝑖𝑓𝑡))
 (𝐷𝐻2 &𝐷𝑉4𝑆ℎ𝑖𝑓𝑡𝑂𝑟𝑀𝑎𝑡𝑐ℎ)|𝐷𝐻1 &𝐷𝑉3𝑆ℎ𝑖𝑓𝑡𝑂𝑟𝑀𝑎𝑡𝑐ℎ|
 (𝐷𝐻𝑧 & 𝐷𝑉2𝑆ℎ𝑖𝑓𝑡𝑁𝑜𝑡𝑀𝑎𝑡𝑐ℎ))&𝑊−1

16. 𝐷𝑉𝑧𝑆ℎ𝑖𝑓𝑡 = 𝐷𝑉𝑧 ≪ 1

17. 𝐷𝑉−1 = (𝐷𝐻3 & 𝑊2)| (𝐷𝐻2 & 𝑊1)|
 ((𝐷𝐻𝑧 & ~(𝐷𝑉4𝑆ℎ𝑖𝑓𝑡𝑂𝑟𝑀𝑎𝑡𝑐ℎ | 𝐷𝑉3𝑆ℎ𝑖𝑓𝑡𝑂𝑟𝑀𝑎𝑡𝑐ℎ | 𝐷𝑉2𝑆ℎ𝑖𝑓𝑡))
 (𝐷𝐻3 &𝐷𝑉4𝑆ℎ𝑖𝑓𝑡𝑂𝑟𝑀𝑎𝑡𝑐ℎ)|𝐷𝐻2 & 𝐷𝑉3𝑆ℎ𝑖𝑓𝑡𝑂𝑟𝑀𝑎𝑡𝑐ℎ|
 (𝐷𝐻1 & 𝐷𝑉2𝑆ℎ𝑖𝑓𝑡𝑁𝑜𝑡𝑀𝑎𝑡𝑐ℎ))&𝑊−1

18. 𝐷𝑉−2𝑆ℎ𝑖𝑓𝑡 = 𝐷𝑉−1 ≪ 1

 // (4) Compute DVmin : Upper Gap area : DVn2

19. 𝐷𝑉−2𝑆ℎ𝑖𝑓𝑡 = (𝐷𝑉4𝑆ℎ𝑖𝑓𝑡 | 𝐷𝑉3𝑆ℎ𝑖𝑓𝑡 |𝐷𝑉2 𝑆ℎ𝑖𝑓𝑡 | 𝐷𝑉1𝑆ℎ𝑖𝑓𝑡 | 𝐷𝑉𝑧𝑆ℎ𝑖𝑓𝑡 |
 𝐷𝑉−1𝑆ℎ𝑖𝑓𝑡)^(2

𝑤𝑜𝑟𝑑 − 1)
 // inisialisasi DH

20. 𝐷𝐻2 = (𝐷𝐻2 & ~(𝑊2|𝑊1))
21. 𝐷𝐻3𝑂𝑟𝑀𝑎𝑡𝑐ℎ = (𝐷𝐻3 | 𝑊1)
22. 𝐷𝐻4𝑂𝑟𝑀𝑎𝑡𝑐ℎ = (𝐷𝐻4 | 𝑊2)
23. 𝐷𝐻−2𝑡𝑜𝑝1 = (𝐷𝐻−2 |𝐷𝐻−1|𝐷𝐻𝑧|𝐷𝐻1)

 // (5) compute DHn1, DHz, DH1, DH2, DH3, DH4

24. 𝐷𝐻−1 = (𝐷𝐻3𝑆ℎ𝑖𝑓𝑡 & 𝑊2)|𝐷𝐻2𝑆ℎ𝑖𝑓𝑡 & 𝑊1|((𝐷𝑉3𝑆ℎ𝑖𝑓𝑡 & 𝐷𝐻4𝑂𝑟𝑀𝑎𝑡𝑐ℎ)|

 (𝐷𝑉2𝑆ℎ𝑖𝑓𝑡 & 𝐷𝐻3𝑂𝑟𝑀𝑎𝑡𝑐ℎ)|(𝐷𝑉1𝑆ℎ𝑖𝑓𝑡 & 𝐷𝐻2)(𝐷𝑉𝑧 𝑆ℎ𝑖𝑓𝑡 & 𝐷𝐻−2𝑡𝑜1)) & 𝑊−1

25. 𝐷𝐻𝑧 = (𝐷𝐻2𝑆ℎ𝑖𝑓𝑡 & 𝑊2)|𝐷𝐻1𝑆ℎ𝑖𝑓𝑡 & 𝑊1|((𝐷𝑉2𝑆ℎ𝑖𝑓𝑡 & 𝐷𝐻4𝑂𝑟𝑀𝑎𝑡𝑐ℎ)|

Bit-Parallelism Score Computation with Multi Integer Weight

45

 (𝐷𝑉1𝑆ℎ𝑖𝑓𝑡 & 𝐷𝐻3𝑂𝑟𝑀𝑎𝑡𝑐ℎ)|(𝐷𝑉𝑧𝑆ℎ𝑖𝑓𝑡 & 𝐷𝐻2)(𝐷𝑉−1 𝑆ℎ𝑖𝑓𝑡 & 𝐷𝐻−2𝑡𝑜1)) & 𝑊−1

26. 𝐷𝐻1 = (𝐷𝐻1𝑆ℎ𝑖𝑓𝑡 & 𝑊2)|𝐷𝐻𝑧𝑆ℎ𝑖𝑓𝑡 & 𝑊1|((𝐷𝑉1𝑆ℎ𝑖𝑓𝑡 & 𝐷𝐻4𝑂𝑟𝑀𝑎𝑡𝑐ℎ)|

 (𝐷𝑉𝑧𝑆ℎ𝑖𝑓𝑡 & 𝐷𝐻3𝑂𝑟𝑀𝑎𝑡𝑐ℎ)|(𝐷𝑉−1𝑆ℎ𝑖𝑓𝑡 & 𝐷𝐻2)(𝐷𝑉−2 𝑆ℎ𝑖𝑓𝑡 & 𝐷𝐻−2𝑡𝑜1)) & 𝑊−1

27. 𝐷𝐻2 = (𝐷𝐻𝑧𝑆ℎ𝑖𝑓𝑡 & 𝑊2)|(𝐷𝐻−1𝑆ℎ𝑖𝑓𝑡 & 𝑊1)|

 ((𝐷𝑉𝑧𝑆ℎ𝑖𝑓𝑡 & 𝐷𝐻4𝑂𝑟𝑀𝑎𝑡𝑐ℎ)|𝐷𝑉−1𝑆ℎ𝑖𝑓𝑡 & 𝐷𝐻3𝑂𝑟𝑀𝑎𝑡𝑐ℎ|(𝐷𝑉−2𝑆ℎ𝑖𝑓𝑡 & 𝐷𝐻2))& 𝑊−1

28. 𝐷𝐻3 = (𝐷𝐻−1𝑆ℎ𝑖𝑓𝑡 & 𝑊2)|(𝐷𝐻−2𝑆ℎ𝑖𝑓𝑡 & 𝑊1)|

 ((𝐷𝑉−1𝑆ℎ𝑖𝑓𝑡 & 𝐷𝐻4𝑂𝑟𝑀𝑎𝑡𝑐ℎ)|(𝐷𝑉−2𝑆ℎ𝑖𝑓𝑡 & 𝐷𝐻3𝑂𝑟𝑀𝑎𝑡𝑐ℎ))&𝑊−1

29. 𝐷𝐻4 = (𝐷𝐻4𝑂𝑟𝑀𝑎𝑡𝑐ℎ & (𝐷𝑉−2𝑆ℎ𝑖𝑓𝑡 & 𝑊2))|(𝐷𝐻4𝑂𝑟𝑀𝑎𝑡𝑐ℎ & (𝐷𝐻−2𝑆ℎ𝑖𝑓𝑡 & 𝑊1))|
 (𝐷𝐻𝑝4𝑂𝑟𝑀𝑎𝑡𝑐ℎ & (𝐷𝐻𝑛2𝑆ℎ𝑖𝑓𝑡 & 𝑊−1))

30. 𝐷𝐻−2 = (𝐷𝐻4 | 𝐷𝐻3 | 𝐷𝐻2 |𝐷𝐻1 | 𝐷𝐻𝑧 |𝐷𝐻−1) ^ (2
𝑤𝑜𝑟𝑑 − 1)

31. end for

 Using the same principle, this algorithm promises to apply to cases of more complex weight

sets. The more complex weight sets have more integer weights, which has an impact on the

number of functional tables involved in computing. Adding a functional table means increasing

the logical operation term. The integer weight range will affect the number of integer variables,

the wider the integer range, the more integer variables will be used.

Result and Analysis

 We compare the algorithm with the classical DP by Needleman Wunch [15], for score

computation result and the running time. Using the same DNA data set as the data set used by

Loving [10], data sets are regenerated to produce varying sequence lengths (20, 30, 40, 50 and

60). Algorithms implemented in the C programming language environment. The result is the

average of the 30 time running from each algorithm.

 For all sequence size, the Multi-Integer algorithm give the same score computational results

with the DP score matrix. The average of multi-integer score running time for each sequence

size as showed at figure 9.

Figure 10. Multi-integer Score Computation Running time compare to Classical DP Score

computation running time

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

30 40 50 60

ti
m

e(
se

co
n
d

s)

Sequence Size

Multi-integer Bit-parallelism Score Computation Running Time

DP

Bitpar

preproc. BitPar

Setyorini, et al.

46

 The increasing sequence size give 𝑂(𝑚𝑛) running process in classical DP, but only 𝑂(𝑚)
on multi-integer bit-parallelism score computation. Multi-integer need not much time in

preprocessing stage.

 The detail of running time in each sequence size described on the figure 11. The greater

sequence size give longer distance between the two graphics. For average sequence pair, multi-

integer score computation give slow increasing time. The fluctuation on the running time showed

the behind proses on virtual machine C environment Both of the DP and Bit-parallelism have

the close variance result of time computation (in 10−9).

(a)

(b)

0

0.00002

0.00004

0.00006

0.00008

0.0001

1

3
3

6
5

9
7

1
2

9

1
6

1

1
9

3

2
2

5

2
5

7

2
8

9

3
2

1

3
5

3

3
8

5

4
1

7

4
4

9

4
8

1

ti
m

e(
se

co
n
d

)

Sequence Number

Score Computation on sequence size : 30

Bitpar

DP

0

0.00002

0.00004

0.00006

0.00008

0.0001

1

3
3

6
5

9
7

1
2

9

1
6

1

1
9

3

2
2

5

2
5

7

2
8

9

3
2

1

3
5

3

3
8

5

4
1

7

4
4

9

4
8

1

ti
m

e(
se

co
n
d

)

sequence number

Score Computation on sequence size 40

Bitpar

DP

Bit-Parallelism Score Computation with Multi Integer Weight

47

(c)

(d)

Figure 11. Detail Multi-integer Score Computation Running time compare to Classical DP

Score computation running time (a) sequence size = 30, (b) sequence size = 40, (c)sequence

size = 50, and (d)sequence size = 60,

5. Conclusion

 The algorithm applies multi integer weights by combining functional-tables. The algorithm

succeeds in providing the same score matrix with the classic DP score matrix. Although this

algorithm less flexible, because one code is created for a set weight, this algorithms give faster

computation result in 𝑂(𝑚) in time and only need O(b) space requirements, with b according to

the set range of weights.

 General algorithm of multi integer score computation promise computational logic relations

with more complex weights set (need more difference integer weights), with still maintained in

𝑂(𝑚) time computation. By adding an algorithm for recovery alignment, this method has the

potential to be an alternative to faster computing scores on sequence alignment tools.This method

also promises faster computation for other optimization problems that use the DP algorithm with

multi integer weights.

0

0.00002

0.00004

0.00006

0.00008

0.0001

1
2

6
5

1
7

6
1

0
1

1
2

6
1

5
1

1
7

6
2

0
1

2
2

6
2

5
1

2
7

6
3

0
1

3
2

6
3

5
1

3
7

6

ti
m

e(
se

co
n
d

)

sequence number

Score computation on sequence size : 50

Bitpar

DP

0

0.00002

0.00004

0.00006

0.00008

0.0001

1

2
2

4
3

6
4

8
5

1
0

6

1
2

7

1
4

8

1
6

9

1
9

0

2
1

1

2
3

2

2
5

3

2
7

4

2
9

5

3
1

6

ti
m

e(
se

co
n
d

)

sequence number

score computation on sequence size = 60

Bitpar

DP

Setyorini, et al.

48

6. Reference

[1]. G. Navarro, “A guided tour to approximate string matching,” ACM computing surveys

(CSUR), vol. 33, pp. 31-88, 2001.

[2]. E. Pertsemlidis dan J. W. F. Iii, “Tutorial Having a BLAST with bioinformatics (and

avoiding BLASTphemy),” 2001

[3]. W. R. Pearson, “Finding protein and nucleotide similarities with FASTA,” Current

protocols in bioinformatics, vol. 53, pp. 3-9, 2016.

[4]. T. P. Walsh, C. Webber, S. Searle, S. S. Sturrock dan G. J. Barton, “SCANPS: a web server

for iterative protein sequence database searching by dynamic programing, with display in

a hierarchical SCOP browser,” Nucleic acids research, vol. 36, pp. W25--W29, 2008

[5]. T. Rognes, “ParAlign: a parallel sequence alignment algorithm for rapid and sensitive

database searches,” Nucleic acids research, vol. 29, pp. 1647-1652, 2001.

[6]. E. F. O. Sandes dan A. C. Melo, “CUDAlign: using GPU to accelerate the comparison of

megabase genomic sequences,” dalam ACM Sigplan Notices, 2010.

[7]. C.-L. Hung, Y.-S. Lin, C.-Y. Lin, Y.-C. Chung dan Y.-F. Chung, “CUDA ClustalW: An

efficient parallel algorithm for progressive multiple sequence alignment on Multi-GPUs,”

Computational Biology and Chemistry, vol. 58, pp. 62-68, 2015.

[8]. H. Hyyr{\"o}, “Bit-parallel LCS-length computation revisited,” dalam Proc. 15th

Australasian Workshop on Combinatorial Algorithms (AWOCA 2004), 2004

[9]. H. Hyyr{\"o}, “Explaining and extending the bit-parallel approximate string matching

algorithm of Myers,” 2001.

[10]. J. Loving, Y. Hernandez dan G. Benson, “BitPAl: a bit-parallel, general integer-scoring

sequence alignment algorithm,” Bioinformatics, vol. 30, no. 22, pp. 3166-3173, 2014..

[11]. R. Baeza-Yates dan G. H. Gonnet, “A new approach to text searching,” Communications

of the ACM, vol. 35, pp. 74-82, 1992.

[12]. G. Myers, “A fast bit-vector algorithm for approximate string matching based on dynamic

programming,” Journal of the ACM (JACM), vol. 46, no. 3, pp. 395-415, 1999

[13]. L. Allison dan T. I. Dix, “A bit-string longest-common-subsequence algorithm,”

Information Processing Letters, vol. 23, pp. 305-310, 1986.

[14]. M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon dan J. F. Reid, “A fast and practical bit-

vector algorithm for the longest common subsequence problem,” Information Processing

Letters, vol. 80, pp. 279-285, 2001

[15]. S. B. Needleman dan C. D. Wunsch, “A general method applicable to the search for

similarities in the amino acid sequence of two proteins,” Journal of Molecular Biology, vol.

48, no. 3, pp. 443-453, 1970.

[16]. T. F. Smith, M. S. Waterman dan W. M. Fitch, “Comparative biosequence metrics,”

Journal of Molecular Evolution, vol. 18, pp. 38-46, 1981.

[17]. J. Xiong, Essential bioinformatics, Cambridge University Press, 2006.

[18]. T. P. a. W. C. a. S. S. a. S. S. S. a. B. G. J. Walsh, “SCANPS: a web server for iterative

protein sequence database searching by dynamic programing, with display in a hierarchical

SCOP browser,” Nucleic acids research, pp. 25-29, 2008.

[19]. E. Ukkonen, “Algorithms for approximate string matching,” Information and Control, vol.

64, pp. 100-118, 1985.

[20]. T. F. Smith dan M. S. Waterman, “Comparison of biosequences,” Advances in Applied

mathematics, vol. 2, no. 4, pp. 482-489, 1981.

[21]. M. S. Rosenberg, Sequence alignment: methods, models, concepts, and strategies, Univ of

California Press, 2009.

[22]. D. Kirk dan others, “NVIDIA CUDA Software and GPU Parallel Computing Architecture,”

dalam ISMM, 2007.

Bit-Parallelism Score Computation with Multi Integer Weight

49

Setyorini, graduated a Bachelor degree in Informatics from Sekolah Tinggi

Teknologi Telkom, Bandung in 2000 and Master degree in Computer

Engineering from Institut Teknologi Bandung in 2004. Currently she is a

doctoral student at the School of Electrical Engineering and Informatics,

Institut Teknologi Bandung.

Kuspriyanto is a professor at the School of Electrical Engineering and

Informatics, Institut Teknologi Bandung. He received his bachelor degree in

Electrical Engineering from Institut Teknologi Bandung in 1974, D.E.A (1979)

and Ph.D. (1981) in Automatic System from USTL, France. His field of

interest includes Computer System, Computer Architecture, and Real Time

Systems.

Dwi H. Widyantoro, is a professor at the School of Electrical Engineering and

Informatics, Institut Teknologi Bandung. He graduated from his Bachelor

degree program in Computer Science ITB; his Master and Doctoral program

in Computer Science from Texas A&M University, College Station, TX, USA.

His field of interest include Machine Learning.

Adi Pancoro, graduated from his Bachelor degree program in Biology

Departement ITB; and his PhD degree from Departement Genetics and

Biochemistry, Newcastle upon Tyne, England. He is now a Senior Lecturer for

Undergraduate and Master graduate program in School of Life Science and

Technology, ITB. His reseach interests includes Biotechnology and

Bioinformatics.

Setyorini, et al.

50

