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Abstract: The analysis of resonant frequency for anisotropic artificial circular dielectric 

resonator (CDR) encapsulated in waveguide is investigated theoretically. The anisotropic 

permittivity of CDR is established by taking a relative permittivity value in one direction 

higher than the values of other directions in cylindrical coordinate system. By deriving 

Maxwell time-dependent curl equations for the CDR inside of a short-ended circular 

waveguide and then applying proper boundary conditions for the waveguide walls, 

mathematical formulation to calculate resonant frequencies for transverse electric (TE) and 

transverse magnetic (TM) wave modes as the function of material thickness and the anisotropic 

permittivity value are determined. For a comparison, the analysis is also performed for 

conventional CDR loaded in the same waveguide. In this case, the conventional CDR uses a 

natural dielectric material with isotropic permittivity. From the results, it shows that the 

anisotropic artificial CDR has resonant frequencies lower than the conventional CDR for the 

first of 3 successive TE and TM wave modes. The significant impact in lowering resonant 

frequencies for the TE and TM wave modes are shown by the anisotropic permittivity in ρ- and 

z-directions, respectively. The anisotropic permittivities are able to reduce the resonant 

frequencies of conventional CDR up to 13.77%, 4.19%, and 5.99% for TE11, TE21, and TE01 
wave modes, respectively and 43.07%, 35.98%, 34.86% for the TM01, TM11, and TM21 

wave modes, respectively. These results can be applicable for wave mode selection. The 

anisotropic permittivity in -direction has no effect in lowering the TE and TM wave mode 

resonant frequencies. 
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1. Introduction 

Artificial dielectric material (ADM) is a dielectric material which has constitutive 

parameter values different to those of the conventional dielectric material. The ADM is 

makeable from conventional dielectric material by an electromagnetics process. From the fact 

when electromagnetic source is fed into conductor and dielectric material, they will give 

response differently. The electrons move freely from one position to other positions in 

conductor, in other hand the electrons movement will be bounded in dielectric material. This 

phenomenon is known as polarization. Even though electrons can move freely in conductor, 

however if the size of conductor is gradually minimized into finite metal strips, the electrons 

will certainly move no freely like the movement in dielectric material. 

Basically, the structure of ADM consists of metal strip layers etched on conventional 

dielectric material. The presence of these metal strips causes the change of electromagnetics 

characteristics in the dielectric layer. It is well known that the electromagnetics characteristics 

are determined by shape, size, density, arrangements, and spacing of these metal strips [1]. It is  
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even  possible  to  configure  ADM  to have negative permittivity [2], negative permeability 

[3], both of negative permittivity and permeability [4], refractive index less than unity [5], huge 

permittivity [6], and anisotropic permittivity [7]-[9]. By exploiting these properties, various 

applications of ADM in microwave devices have been proposed by many researchers such as 

antenna, filter, absorber, and resonator. Some unique properties of ADM have been explored in 

conjunction with its application such as to reject unwanted wave modes in the filter [10], to 

suppress spurious frequencies in the filters [11], to improve the tilted beam of the planar end-

fire antennas in elevation plane [12], to reduce the dimension of microwave resonators [13], to 

minimize reflected electric field magnitude in absorber [14] and to enhance the gain of end-fire 

bow-tie antenna [15]. 

One challenge in ADM researches is to make dielectric material which has relative 

permittivity value in one direction is different with other directions. In this case, the 

permittivity has magnitude and vector which is known as anisotropic permittivity. Some 

related researches of ADM with anisotropic permittivity and its applications have been 

reported in the last decade [6]-[9]. Those researches have been carried out using the simple 

rectangular shapes which corresponding to analysis on Cartesian coordinate system. It is very 

rare to find literatures that discuss on circular metal shapes which corresponding to analysis on 

cylindrical coordinate system.  On other hand, there is a need of this kind of system for many 

applications such as circular waveguide, circular cavity resonator, circular microstrip antenna, 

coaxial cable and fiber optic. All of the applications need the ADM with anisotropic 

permittivity which the material property is constructed from circular shapes of metal layers. 

In fulfilling the gap above, in this paper a theoretical analysis for characteristic of ADM in 

a circular shaped is proposed based on cylindrical coordinate system. The analysis is focused 

on resonant frequency for the ADM with anisotropic permittivity applied as a resonator. Hence 

for being analyzable, the resonator made of anisotropic ADM is encapsulated in a circular 

waveguide which is shorted at the both ends. Later, this resonator is called as artificial circular 

dielectric resonator (CDR). The resonant frequency expressions of artificial CDR are 

formulated for TE and TM wave modes by using proper boundary conditions required for the 

Maxwell equations derivation. The anisotropic permittivity of artificial CDR is obtained by 

making relative permittivity in one direction higher than others and then the resonant 

frequencies of first three successive TE and TM wave modes are analyzed [16]-[17]. The 

analysis of resonant frequency is also conducted for conventional CDR loaded in the same 

waveguide. It is noted the term of conventional CDR represents a resonator which is 

constructed by natural dielectric materials with isotropic permittivity. The attempts are to 

demonstrate the impact of each anisotropic permittivity in lowering resonant frequencies. Here, 

the anisotropic permittivity is predicted able to reduce the resonant frequencies of conventional 

CDR on those wave modes. 

The theoretical analysis of resonant frequency on TE and TM wave modes for artificial 

CDR are carried out mathematically by using formulation derived from Maxwell equations. 

The formulation is determined to calculate resonant frequencies on desired TE and TM wave 

modes as a function of the thickness of ADM with anisotropic and the value of anisotropic 

permittivity. In the case of the conventional CDR, the resonant frequencies are impacted by the 

natural dielectric material thickness and isotropic permittivity value denoted by r. By using 

the formulation, an impact of each anisotropic permittivity on desired TE and TM wave modes 
are investigated. The results are important for resonant wave mode selection in microwave 

device applications. 

 

2. Related Work 

A closest related research topic is the research of ADM in which the permittivity is defined 

on each direction of Cartesian coordinate system. In principle, the ADM with anisotropic 

permittivities based on Cartesian coordinate system has three relative permittivities of yx ,  

and z  in x-, y-, and z-direction, respectively. This kind of anisotropic permittivities for ADM 
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has been investigated numerically and experimentally [6]-[9]. The materials were appropriate 

to be implemented in microwave fields which have the geometry structure in rectangular 

shaped such as rectangular waveguide and a rectangular microstrip antenna. It was shown that 

the rectangular ADM had the relative permittivity in y-direction higher than others, i.e. x- and 

z-directions. In the investigation, the proposed ADM with anisotropic permittivity was applied 

as resonator and analyzed by encapsulating in a rectangular waveguide. 

Furthermore, the rectangular resonator with anisotropic permittivity was achieved by 

employing metal strip layers deployed on dielectric substrates. The gap between metal strip 

layers was deeply explored since it provided mutual coupling in which this is one of the 

parameters emphasized in the investigation. The resonant frequencies of proposed rectangular 

resonator were performed through simulation for different resonator thickness. The purpose of 

analysis was to show the impact of anisotropic permittivity in y-direction to the resonant 

frequencies lowering. While on the experimental steps, the rectangular resonator was 

fabricated for characteristics measurement and implemented as a waveguide bandpass filter 

(BPF). They reported that the realized BPF had insertion loss value higher than 0.5dB with 

good spurious characteristics [7]-[8]. 

 

3. Overview of Artificial Circular Dielectric Resonator  

For analyzing the impact of anisotropic permittivity to resonant frequency, the ADM as 

resonator application, i.e. artificial CDR, is loaded in a short-ended circular waveguide. Figure 

1 illustrates the artificial CDR with the thickness d encapsulated in a circular waveguide with 

the radius of a for the resonant frequency analysis in TE and TM wave modes. The artificial 

CDR is assumed to be homogeneous and lossless. Meanwhile, the constitutive parameters of 

artificial CDR are given in (1) in which the permeability equals to permeability of free space 

and the permittivity has the form of matrix    expresses the anisotropic permittivity in 

cylindrical coordinate system. 
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where 0  is the permeability of free space and 0  is the permittivity of free space, whereas 

 ,  , and z are the relative permittivity in ρ-, , and z-direction, respectively.  

 

 
Figure 1.  Illustration of artificial CDR encapsulated in a circular waveguide for resonant 

frequency analysis based on cylindrical coordinate system. 

 

For simplicity reason in analysis, non-diagonal elements of permittivity matrix are set to 

be zero, while the diagonal elements are non zero. The fields that exist in the artificial CDR are 

given by the Maxwell equations in differential forms for the time-harmonic electric fields (E) 

and magnetic fields (H) as expressed in (2) and (3), respectively. 

Theoretical Analysis of Resonant Frequency for Anisotropic Artificial 

261



 

 

 

 HjE 0


    (2) 

  EjH
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In the cylindrical coordinate system, the fields assumed to propagate through the circular 

waveguide in z-direction penetrate the artificial CDR in the TE or TM wave mode as the 

function of 
 ztje  

 with   is the phase constant. In the case of TE wave mode, the 

component of E in a propagation direction is zero ( 0Ez  ), while for TM wave mode the 

component of H in a propagation direction is zero ( 0H z  ). By using some mathematical 

manipulations for curl function of (2) and (3)in cylindrical coordinate system, the Helmholtz 

equations for TE and TM wave modes are determined as written in (4) and (5), respectively. 
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From (4) and (5), there are 2 wave number equations for the artificial CDR, i.e. k  and 

k , which are given by (6) and (7), respectively. 
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The solution for (4) and (5) can be obtained by using the method of variable splitting in 

cylindrical coordinate system as expressed in (8). 

 

    RG    (8) 

 

where G  is defined as zH  and zE  for TE and TM wave mode, respectively. According to 

(8), the Helmholtz equations in (4) and (5) can be split into 2 equations as function of ρ and  

which have the general solution as expressed in (9) and (10), respectively. 
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where nJ  and nN  are the Bessel and Neumann functions, respectively. Here,  R  is taken 

in the Bessel function only, whilst    is solved in cosine function only. Then, by 

substituting (9) and (10) into (4) and (5), respectively, and applying proper boundary 

conditions in which  R  is defined for a  and    is suitable for the defined value of 
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 R , the solution of zH  and zE  in time domain can be obtained as expressed in (11) and 

(12), respectively. 
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Since zH  in (11) must vanish when ρ = a, this condition will satisfy when   0k'Jn  . 

By the condition, it is necessary to choose the value of k in such a manner 

that   0k'Jn  . If the 
a

'X
k

np
   then   ak'X np    and np'X  is the root of the first 

derivation of the Bessel’s function. For the first three TE wave modes, the values are 1.841, 

3.054, and 3.832 [18]. For a conventional CDR, k is set to be 
a

'X
k

np
 .  The k is a wave 

number of a conventional CDR. 

By differentiating (11) and (12) respect to ρ, the component of E  in -direction is 

obtained expressed in (13). Then by differentiating the results, i.e. (13), respect to z, the 

component of H  in ρ-direction is determined as written in (14). 
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From (13) and (14), the wave impedance of artificial CDR can be obtained from ratio 

between the component of E  in -direction and the component of H  in ρ-direction. Hence, 

the wave impedances are expressed in (15) and (16) for TE and TM wave mode, respectively. 
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Since the artificial CDR with the thickness of d is placed in the middle of circular 

waveguide, so there are free space regions in the front and rear sides. In this case, an 

evanescent mode occurs in the free space regions with the phase constant () in (15) and (16) 

defined as  j  and the relative permittivity in -direction () set to be 1. As a 

consequence, the wave number at the free space regions is written in (17). 
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Moreover by employing the short-open termination method [8], the input impedance of 

artificial CDR can be calculated as given in (18). 
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When the magnitude of input impedance equals to the wave impedance at the outside of 

artificial CDR, it resonates in the certain frequency of each TE mode. In such condition, the 

expression of relation for TE wave mode resonant frequency and thickness of artificial CDR 

can be obtained as obtained as written in (19) with c denotes the speed of light in free space 

and the value of  and  given in (20) and (21), respectively. 
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From (19)-(21), the resonant frequency for conventional CDR with the thickness of d 

which is loaded in the same dimension of circular waveguide can also be calculated by 

replacing the values of   and   using of r . The calculation of resonant frequency for 

conventional CDR is required for comparison to show the unique features of artificial CDR 

with anisotropic permittivity. 

By using the same procedure as derived for TE wave mode, the expression of relation for 

TM wave mode resonant frequency and thickness of artificial CDR can also be determined as 

expressed in (22) with  and  determined in (21) and (23), respectively. 
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Similar to the TE wave mode, to calculate the resonant frequency for conventional CDR in 

the TM wave mode, the values of  ,   and z  in (22) and (23) are replaced by r . It is 

noted that npX  is the root of Bessel function in which for the first of 3 successive TM wave 

modes the values are 2.405, 3.832, and 5.136 [18]. 
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4. Calculation, Analysis, and Discussion 

Based on the derived mathematical formulation in the previous section, the calculation of 

resonant frequency for artificial CDR with anisotropic permittivity encapsulated in a circular 

waveguide is performed. The thickness of artificial CDR is varied from 0.2mm to 4 mm. 

Meanwhile, the radius of circular waveguide is defined to be 16.27mm with the length set to be 

long enough compared to the maximum thickness of artificial CDR. The relative permittivity 

value of artificial CDR for the TE wave mode is examined for 2 different variations, i.e. 

5 10,     and 105,    . As comparison, the calculation of TE wave mode 

resonant frequency for conventional CDR encapsulated in the same dimension of circular 

waveguide is also performed for isotropic permittivity ( r ) of 5 with the same variation of 

thickness. 

Figures 2 and 3 plot the numerical calculation results of resonant frequencies obtained 

using (19)-(21) for anisotropic artificial CDR with 2 different variations of relative permittivity 

value. The first of 3 successive TE wave modes, i.e. TE11δ, TE21 δ, and TE01 δ, for conventional 

CDR with isotropic permittivity are depicted together as comparison. From Fig. 2, it shows that 

the resonant frequencies for artificial CDR are lower than of the conventional CDR for the 

value of   twice than of r . The different resonant frequencies between artificial CDR and 

conventional CDR are becoming smaller for higher order wave modes with the maximum 

value up to 8.5% for TE11δ wave mode. The similar trend occurs also for the thickness of 

artificial CDR in the same wave mode where the thicker thickness of CDR has the smaller 

different resonant frequencies. This is contradictive with the calculation results shown in Fig. 3 

for the value of   twice than of r in which there are almost no different resonant 

frequencies between artificial CDR and conventional CDR. 
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Figure 2.  Resonant frequencies for first of 3 successive TE wave modes ( 510,     

for artificial CDR and 5r   for conventional CDR). 
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Figure 3.  Resonant frequencies for first of 3 successive TE wave modes ( 105,     

for artificial CDR and 5r   for conventional CDR). 

 

From those results, it can be inferred that the anisotropic permittivity of artificial CDR in 

ρ-direction has more significant impact in resonant frequency lowering for the TE wave mode 

than the anisotropic permittivity in  -direction. This can be explained from (19)-(20) that the 

resonant frequency of artificial CDR is inversely proportional to the root of relative 

permittivity in  - and ρ-direction. Therefore, the difference value of  and  will give no 

change remarkably to the resonant frequency of artificial CDR for the TE wave mode. 

Different with the TE wave mode, the calculation of TM wave mode resonant frequency 

for artificial CDR with anisotropic permittivity encapsulated is examined for 3 different 

variations, i.e. 5 ,5 10, z    , 5 ,105, z    , and 

10 ,55, z    . The thickness of artificial CDR is also varied from 0.2mm to 4mm 

with the dimension of circular waveguide is the same as one used in the TE wave mode 

investigation. The calculation of resonant frequency is conducted for the first of 3 successive 

TM wave modes, i.e. TM01, TM11, and TM21. As comparison, the calculation of resonant 

frequency for conventional CDR in the TM wave mode is also performed for isotropic 

permittivity ( r ) of 5 with the same variation of thickness. 

The calculation results of resonant frequency for TM01, TM11, and TM21 wave modes 

obtained using (22)-(23) are depicted in Figures 4, 5, and 6, respectively, for 3 different 

variations of anisotropic permittivity. The calculation results for conventional CDR with 

isotropic permittivity are also plotted together for each corresponding result as comparison. 

From the results, it shows that the anisotropic permittivity of artificial CDR in z-direction 

shown in Fig. 6 has the highest contribution in lowering the resonant frequency for TM wave 

mode up to 72% among to other values of anisotropic permittivity. This means that the 

component of zE  has the strongest magnitude compare to the component of E  and E  in 

the circular waveguide. Whilst, the thickness of artificial CDR in the TM wave mode has the 

similar tendency to the TE wave mode in which the thicker thickness has the smaller different 

resonant frequencies. 
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Figure 4.  Resonant frequencies for first of 3 successive TM wave modes 

( 5 ,5 10, z     for artificial CDR and 5r   for conventional CDR). 
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Figure 5.  Resonant frequencies for first of 3 successive TM wave modes 

( 5 ,10 5, z     for artificial CDR and 5r   for conventional CDR). 

 

It is evidence that when the anisotropic permittivity of artificial CDR has the same 

direction with electric field which has the strongest magnitude, it will be dominant in lowering 

the resonant frequency. Even this fact is reinforced by the anisotropic permittivity in ρ-

direction, since it corresponds to the component of E  which has the magnitude smaller than 
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the component of zE , the anisotropic permittivity is able to reduce the resonant frequency only 

for the thickness of artificial CDR less than 2mm as shown in Fig. 4. Moreover, the anisotropic 

permittivity of artificial CDR in  -direction plotted in Fig. 5 has the lowest impact in 

lowering the resonant frequency for TM wave mode. This can be understood since the 

mathematical formulation of resonant frequency for TM wave mode expressed in (22)-(23) has 

no function of  , therefore the value of   will have no contribution to the resonant 

frequency lowering of artificial CDR. 
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Figure 6.  Resonant frequencies for first of 3 successive TM wave modes 

( 10 ,5 5, z     for artificial CDR and 5r   for conventional CDR). 

 

5. Conclusions 

The resonant frequencies of anisotropic artificial circular dielectric resonator (CDR) 

encapsulated in a waveguide for the first of 3 successive TE and TM wave modes have been 

analyzed theoretically. The analysis has been carried out based on mathematical formulation 

derived from Maxwell time-dependent curl equations for anisotropic artificial CDR loaded in a 

short-ended circular waveguide. The boundary conditions have been applied properly for the 

waveguide walls to obtain the mathematical formulation. It has been shown that the artificial 

CDR with anisotropic permittivity could reduce the resonant frequency of conventional CDR. 

From the analysis, it can be concluded that the anisotropic permittivity of artificial CDR which 

has a significant impact in lowering the resonant frequencies for the TM wave mode was the 

anisotropic permittivity in z-direction, while for the TE wave mode it was the anisotropic 

permittivity in ρ-direction. In addition, the anisotropic permittivity has no effect in lowering 

the resonant frequencies of TE and TM wave modes if the anisotropic permittivity has the 

same direction with the lowest magnitude of electric field. 
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