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Abstract: Conventional optimal power flow studies neglect the effect of temperature on 
resistance for simple calculation. However, the branch resistance changes with the change of 
temperature. Thus, the optimal power flow (OPF) should consider the temperature effect for 
accurate calculation. Moreover, contingency cases should be considered to ensure system 
security. Accordingly, the security-constrained temperature-dependent optimal power flow (SC-
TDOPF) emerges as a critical and practical issue in power systems. To deal with the SC-TDOPF 
problem, this study suggests a hybrid method, namely pseudo-gradient based particle swarm 
optimization and differential evolution method (PGPSO-DE). The suggested PGPSO-DE 
method is applied to the standard IEEE 30 bus system under normal condition as well as 
contingency condition. The findings have shown that the PGPSO-DE method provides better 
solution quality than other studied optimization methods. Consequently, the PGPSO-DE method 
proves its effectiveness in solving the complex SC-TDOPF problem. 
 
Keywords: Power flow analysis; security-constrained; temperature-dependent power flow 
(TDPF); differential evolution; particle swarm optimization; optimal power flow; pseudo 
gradient; hybrid method. 
 
1. Introduction 
 Power flow is always performed to calculate the fitness function when solving the important 
optimization problems in power systems such as economic dispatch, unit commitment, optimal 
power flow, optimal reactive power dispatch, and hydrothermal scheduling. Power flow analysis 
is also used to perform the contingency analysis and transient stability study. Therefore, the 
accuracy of power flow study is a very essential concern. In conventional power flow calculation, 
the temperature effect is ignored and the resistance of the elements of power systems is treated 
as a constant. However, the resistance is a function of temperature. As the temperature rises, the 
resistance of a metallic conductor rises as well. Therefore, there is always an error related to 
temperature in conventional power flow and branch loss calculation. To obtain more accurate 
results, power flow calculation should consider the temperature effect. This study investigates 
the optimal power flow (OPF) problem considering the temperature effect. A fully coupled 
temperature-dependent power flow (TDPF) algorithm in  [1] is used for power flow calculation 
in this study. 
 The OPF problem is one of the most important tools in power system operation and planning. 
Its  solution  offers  the  optimal  settings for generators, transformers, and shunt capacitors which  
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minimize the considered objective function (e.g., total fuel cost) while satisfying various system 
operating limits [2]. The OPF problem has a long history of development since it was first 
introduced in 1962 [3]. This problem has been initially solved by traditional methods based on 
mathematical programming such as Newton-based techniques [4], linear programming [5], non-
linear programming [6], quadratic programming [7], and interior point methods [8]. In general, 
these methods have short computational time and effectively solve the simple OPF problem with 
convex and continuous objective functions. However, the practical OPF is a large-scale, non-
linear and non-convex optimization problem. This is a challenge for solution methods, especially 
for the traditional methods. They may suffer difficulty in finding a global solution or cannot 
successfully solve the complex OPF problem. To overcome these barriers, advanced 
optimization methods (i.e., meta-heuristic methods) have been developed based on biological 
simulation to cope with the complex OPF problem. The meta-heuristic methods have the 
advantage of obtaining near-optimum solutions for any type of optimization problem. Therefore, 
these methods have been widely implemented to various engineering fields. For the OPF 
problem,  the meta-heuristic methods have also been successfully solved this problem such as 
genetic algorithm (GA) [9], particle swarm optimization (PSO) [10], differential evolution (DE) 
[11], artificial bee colony (ABC) algorithm [12], biogeography-based optimization (BBO) [13], 
grey wolf optimizer (GWO) [14], moth swarm algorithm (MSA) [15], krill herd algorithm 
(KHA) [16], and moth-flame optimization (MFO) [17], etc. These methods have shown their 
effectiveness in dealing with this problem. However, they can consume long computational time 
and still suffer sub-optimal solutions when facing complicated and large-scale problems. Besides 
single methods, hybrid methods based on the combination of different algorithms have been also 
developed to efficiently solve the complex OPF problem. Some hybrid methods are mentioned 
such as a hybrid of shuffle frog leaping algorithm (SFLA) and simulated annealing (SA) 
algorithm (SFLA-SA) [18], a hybrid method of modified imperialist competitive algorithm 
(MICA) and teaching learning algorithm (TLA) (MICA-TLA) [19], and a hybrid of particle 
swarm optimization (PSO) and gravitational search algorithm (GSA) (PSOGSA) [20]. In 
general, hybrid methods have the advantage of achieving high-quality solutions for complicated 
optimization problems. However, their disadvantage lies in the setting of many control 
parameters from the combined methods. Improper setting of control parameters can lead the 
algorithm not converge to the global solution. 
 The primary OPF problem was formulated under normal operating conditions of the power 
system. However, contingency cases (e.g., outage of a transmission line) may occur. In such a 
situation, the solution from the OPF problem can violate the system operating constraints. 
Therefore, system security should be considered for the OPF problem to ensure the reliability 
and economic operation of power systems. In this context, the conventional OPF problem 
becomes a security-constraint OPF (SC-OPF) problem. By adding the security constraints, the 
solution of the SC-OPF problem is not only feasible for the normal case (N - 0) but also for the 
contingency case (N - 1). However, the problem becomes very complex and a great challenge 
for solution methods. Recently, many solution methods have been suggested for dealing with the 
SC-OPF problem. The study [21] proposed a modified bacteria foraging optimization algorithm 
(MBFA) to optimally operate the wind-thermal generation system with minimum cost reduction 
of the system loss while satisfying a voltage secure operation. Although a detailed cost model 
was introduced, the valve loading effects was not included in the cost model. In [22], a 
contingency partitioning approach was proposed for the preventive-corrective SC-OPF problem. 
The authors used a DC network model for calculation and the valve point loading effects was 
not considered in this study. A fuzzy based harmony search algorithm (FHSA) was suggested in 
[23] to determine the best solution for the SC-OPF problem. The objective function in this study 
was a quadratic fuel cost function, without considering the valve point loading effects of thermal 
generating units. In [24], an adaptive flower pollination algorithm (APFPA) was successfully 
solved the SCOPF problem with the different objective functions of minimizing the fuel cost, 
power losses and voltage deviation. A cross-entropy (CE) method in [25] was introduced to 
assess the SCOPF solutions. The corresponding SC-OPF stochastic problem was first defined, 
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and the CE was then applied to solve the formulated problem. The results obtained from the CE 
method for the IEEE 57 bus and IEEE 3000 bus systems showed that this method offered betters 
solutions with fewer evaluations than other compared algorithms. Moreover, the SC-OPF 
problem has been also solved by a hybrid method such as a hybrid canonical differential 
evolutionary particle swarm optimization (hC-DEEPSO) [26]. This hybrid method was tested on 
the IEEE standard systems including 57, 118, and 300 buses, showing its effectiveness from the 
comparison of obtained results with other evolutionary methods. In general, the SC-OPF 
problem is a highly nonlinear and non-convex optimization problem, posing a great challenge 
for finding a globally optimal solution. 
 In literature, regarding the OPF problem with temperature effect, there is a few studies have 
investigated this problem. In [27], the authors proposed a gbest-guided artificial bee colony 
(GABC) algorithm to solve the OPF problem as well as the temperature-dependent OPF 
(TDOPF) problem. Also, the TDOPF problem was solved by the chaotic whale optimization 
algorithm (CWOA) [28]. Both GABC and CWOA were tested on the IEEE 30 bus system, the 
2383 bus winter peak Polish system, and the 2736 bus summer peak Polish system. However, 
these two studies did not consider the valve point loading effects in the objective function as well 
as the security constraint in the problem formulation. In this study, the OPF problem is 
investigated with the temperature effect. In addition, the valve point loading effects and the 
security constraint are also considered for the OPF problem. The new OPF problem is called the 
security constraint temperature-dependent OPF (SC-TDOPF) problem. To solve the SC-TDOPF 
problem, this study proposes a hybrid pseudo-gradient particle swarm optimization and 
differential evolution method (PGPSO-DE) [29]. The proposed PGPSO-DE method utilizes the 
search ability of PGPSO and DE to find the near-optimum solution. The PGPSO is used to 
explore the global search while the DE method is used to exploit the local search. As a result, 
the PGPSO-DE method has a key advantage of balance between exploration and exploitation. 
PGPSO-DE can deal with optimization problems having many control variables and complicated 
constraints such as the SC-TDOPF problem. The proposed method has been tested on the IEEE 
30-bus system and their obtained results have been compared with other optimization methods. 
 
2. Mathematical problem formulation of TDPF 
 The resistance of a metallic conductor increases as temperature increases. Thus, the resistance 
is proportional to the temperature and expressed as follows [1]: 
 F

Ref
Ref F

T TR R
T T

+
= ×

+
  (1) 

where R is the conductor resistance; RRef is the conductor resistance at the reference temperature; 
T is the conductor temperature; TRef is the reference temperature; and TF is the temperature 
constant depending on the conductor metal. 
 
A. Thermal model of elements in power systems 
 The thermal characteristic of the devices in power systems is modelled by a generalized 
thermal resistance model as shown in Figure 1. 
 

 
Figure 1. Thermal resistance model for branch element in power system. 
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 In a thermal resistance model, the device temperature rise of the device is linearly 
proportional to the loss of the device. The ratio between the steady-state temperature rise and the 
loss of that device is the thermal resistance. 

 Rise RatedRise

Loss RatedLoss

T TR
P Pθ = =   (2) 

where, Rθ  is the thermal resistance; TRise is the device temperature rise above ambient; PLoss is 
the power loss within the device; TRatedRise is the rated (or reference) device temperature rise; and 
PRatedLoss is the corresponding rated (or reference) loss. 
The temperature of the device (T) equals the ambient temperature (TAmp) plus the device 
temperature rise above ambient (TRise). Rearranging Eq. (2), the temperature of the device is 
expressed as follows: 

 Loss
Amp RatedRise

RatedLoss

PT T T
P

 
= +  

 
  (3) 

If PLoss is suitably expressed as a function of voltage and temperature state, Eq. (3) can be directly 
used in power flow calculation. 
Besides the thermal model of branch element, the other thermal models of power system 
elements such as overhead lines, underground cables, and transformers are given in [1]. 
 
B. Equations of TDPF problem 
 In the TDPF problem, it is assumed that the system must operate in both thermal and steady-
state cases. In addition, there are three main modifications to the conventional power flow as 
follows [1]: 
 
B.1. State Vector: 
 Besides the conventional state variables like V and δ, an additional state variable T for the 
temperature is considered for each temperature-dependent branch. Accordingly, the state vector 
has the form: 

 V
x

T
δ
 
 =  
  

  (4) 

in which, all state variables are expressed in per-unit. 
 
B.2. Mismatch Equations: 
 Conventional power flow employs two mismatch equations including real and reactive power 
mismatch equations. The TDPF problem requires two those convention mismatch equations and 
an additional mismatch equation of temperature difference. Three mismatch equations of the 
TDPF are described as follows:  

, ,( ) ( , , )i Gen i Load i iP P P P V Tδ∆ = − −   (5)  
, ,( ) ( , , )i Gen i Load i iQ Q Q Q V Tδ∆ = − −   (6)  

0 ( , , )ij ijH H V Tδ∆ = −   (7) 
 
B.3. Jacobian Matrix 
 The Jacobian matrix must be restructured due to the addition of the state variable T. Partial 
derivatives of real power, reactive power and temperature difference equation are taken with 
respect to each variable in the state vector (δ, V, and T). The restructured Jacobian matrix is 
expressed as follows: 

Minh-Trung Dao, et al.

85



 
 

 
( , , )

P P P
V T

Q Q QJ V T
V T

H H H
V T

δ

δ
δ

δ

∂ ∂ ∂ 
 ∂ ∂ ∂ 
∂ ∂ ∂ =  ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂ 

  (8) 

 
B.4. Overall procedure of Fully Coupled TDPF 
 There are four types of TDPF as described in [1]. This paper employs fully coupled TDPF 
(FC-TDPF) for calculation. If the Jacobian matrix in Eq. (8) is used, the overall procedure of 
FC-TDPF is described as follows: 
 
Step 1:  Initialize all state variables (ie., δ, V, and T). 
Step 2: Update all branch resistances according to the most recent temperature. Calculate the 
admittance matrix Ybus. 
Step 3: Calculate the Jacobian matrix as in Eq. (8). 
Step 4: Calculate the mismatch (ie., ΔP, ΔQ, and ΔH) using Eqs. (5-7) 
Step 5: Update δ, V, and T as follows:  

 
1

1 1

1

( , , ) .

v v v

v v v v v v

v v v

P
V V J V T Q
T T H

δ δ

δ

+

+ −

+

     ∆
     

= − ∆     
     ∆     

  (9) 

Step 6: If ΔP, ΔQ, ΔH < ε (ε is the specified tolerance), stop the loop. Otherwise, go to Step 2. 
 
3. Problem formulation 
 The SC-TDOPF is a very complicated optimization problem. This problem has many control 
variables and complex constraints that need to be handled. The goal of this problem is to 
determine an optimal set of control variables so as the total cost of thermal generating units is 
minimized while satisfying various constraints of the system in both normal and contingency 
cases. In general, the SC-TDOPF problem is mathematically formulated as follows: 
 Minimize  ( , )F U X   (10) 
subject to the following constraints for the normal case: 
 ( , ) 0h U X =   (11) 
 ( , ) 0g U X ≤   (12) 
and the following constraints for the contingency cases: 
 ( , ) 0S Sh U X =   (13) 
 ( , ) 0S Sg U X ≤   (14) 
where F(.) represents the fuel cost function of generators, U and X are the set of state and control 
variables, respectively; h(.) and g(.) are the set of the equality and inequality constraints, 
respectively; and S is the set of outage lines. 
 
A. Objective function 
The objective function is to minimize the total fuel cost of all thermal generating units. 

 
1

Min  = Min ( )
gN

i gi
i

F F P
=
∑   (15) 

where Ng is the total number of thermal units; and Pgi is the power output of thermal unit i 
In Eq. (15), a quadratic function is used to expressed the fuel cost function of a thermal 
generating unit i as follows: 
 2( )i gi i i gi i giF P a b P c P= + +  (16) 
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 The solution of the SC-TDOPF is more accurate and practical when considering the valve 
point effects (VPEs) of thermal generating units. As a result, the fuel cost function is represented 
as a quadratic function adding a sinusoidal function: 
 2

,min( ) sin( ( ))i gi i i gi i gi i i gi giF P a b P c P e f P P= + + + −
 (17) 

where ai, bi, ci, ei and fi are fuel cost coefficients Ng is the total number of generators; and 
 Pgi,min is the minimum power output of generator i. 
 
B. System Constraints 
 For both normal and contingency cases, the objective function of the SC-TDOPF problem is 
subject to the following constraints: 
 
i. Equality constraints: 
 ( )

1
( ) cos( ) ( ) sin( )

bN

gi di i j ij i j ij i j
j

P P V V G T B Tδ δ δ δ
=

− = × − + × −∑    i = 1, 2, …, Nb (18) 

 ( )
1

( ) sin( ) ( ) cos( )
bN

gi di i j ij i j ij i j
j

Q Q V V G T B Tδ δ δ δ
=

− = × − − × −∑    i = 1, 2, …, Nb   (19) 

 ( )( )2 2
, ( ) ( ) 2 ( ) cos( ) 0ij Amp ij ij i j ij i j i jT T R g T V V g T VVθ δ δ− + × + − × − =   i = 1, 2, …, Nb    (20) 

where Qgi is the reactive power outputs of generator i; Vi and δi are the magnitude and angle of 
voltage at bus i, respectively; Vj and δj are the magnitude and angle of voltage at bus j, 
respectively; Pdi and Qdi are the active and reactive power demands at load bus i, respectively; 
Gij and Bij are the real and imaginary components of elements in the admittance matrix; gij is the 
conductance of line ij; and Nb is the number of buses in the system. 
 
ii. Power generation output limits: 
    i = 1, 2, …, Ng (21) 

   i = 1, 2, …, Ng (22) 
where Pgi,min and Pgi,max denote the limits of active power outputs while Qgi,min and Qgi,max denote 
the limits of reactive power outputs of generator i. 
 
iii. Bus voltage limits: 
     i = 1, 2, …, Ng (23) 

    i = 1, 2, …, Nd (24) 
where Vgi and Vli are the voltage magnitude at generation bus i and load bus i, respectively; Vgi,max 
and Vgi,min represent the limits of voltage magnitudes at generation bus i; Vli,max and Vli,min present 
the limits of voltages at load bus i; and Nd is the number of load buses. 
 
iv. Shunt VAR compensator limits: 
   i = 1, 2, …, Nc (25) 
where Qci is the shunt VAR compensation at bus i; Qci,max and Qci,min denote the capacity limits 
of shunt VAR compensator; and Nc is the number shunt VAR compensator. 
Transformer tap settings limits: 
    k = 1, 2, …, Nt (26) 
where; Tk,min and Tk,max present the limits of tap settings of transformer k; Tk is the value of tap 
setting of transformer k; and Nt is the number of transformer tap settings. 
 
 
 

max,min, gigigi PPP ≤≤

max,min, gigigi QQQ ≤≤

max,min, gigigi VVV ≤≤

max,min, lilili VVV ≤≤

,min ,maxci ci ciQ Q Q≤ ≤

max,min, kkk TTT ≤≤
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v. Transmission line limits 
    l = 1, 2, …, Nl (27) 
where Sl and Sl,max are the apparent power flow and the rating of transmisson line l, respectively; 
and Nl is the number of transmission lines. 
For the security constraint, the values of the severity index (SI) are calculated to rank the severe 
cases of line outage as follows: 

     l = 1, 2, …, Nl (28) 

 
4. The hybrid PGPSO and DE method 
A. Pseudo-Gradient Particle Swarm Optimization Method 
 PSO is a well-known meta-heuristic optimization method. This method simulates the 
behaviors of birds or fishes in finding their food [30]. The PSO method is widely implemented 
to various optimization problems due to its simple structure and it is applicable to large-scale 
problems. PSO initializes randomly a population (swarm) containing individuals (particles). 
Each particle has a position vector Xi and a velocity vector Vi, indicating that each particle has a 
specific velocity for moving from its position to another.  
 
Mathematically, the position of each particle d is expressed as follows: 
 ( 1) ( ) ( ) ( )

1 3 2 4( ) ( )n n n n
id id d id idV V c rand Pbest X c rand Gbest Xω+ = × + × × − + × × −  (29) 

and the corresponding velocity of this particle is updated by: 
 ( 1) ( ) ( )n n n

id id idX X V+ = +  (30) 
where c1 is the coefficient of the individual cognitive component and c2 is the coefficient of the 
social cognitive component; ω is the inertia weight parameter; Pbestd is the best position of 
particle d at iteration n, and Gbest is the best position in the population. 
 To enhance the search ability of PSO, Clerc and Kennedy introduced a constriction factor. 
[31]. The velocity for particles is modified as follows: 
 ( 1) ( ) ( ) ( )

1 3 2 4( ( ) ( ))n n n n
id id d id idV V c rand Pbest X c rand Gbest Xχ ω+ = × + × × − + × × − (31) 

where χ is the constriction factor and is determined as follows: 
 

1 22

2 ; , 4
2 4

c cχ ϕ ϕ
ϕ ϕ ϕ

= = + >
− − −

 (32) 

Besides the modification of the particle's velocity, the particle’s position is updated by using the 
concept of pseudo-gradient [32]. In non-differentiable problems, the pseudo-gradient is used to 
determine whether the current particle's direction in the search space is good or not. Suppose that 
a particle moves from a point xk to another xl, the pseudo-gradient gp(x) is determined by the 
following rules [33]: 
i. If f(xk) ≥ f(xl): The particle's direction is good, and the particle should keep moving in that 
direction. As a result, at point l, the pseudo-gradient is nonzero, (i.e., gp(xl) ≠0). 
ii. If f(xk) < f(xl): The particle's direction is not good, and the particle should move in a different 
direction. As a result, at point l, the pseudo-gradient is zero, (i.e., gp(xl) = 0). 
The rules above are used to update the new position of each particle as follows: 

 
( ) ( 1) ( 1) ( ) 1

( 1)
( 1) ( ) 1

( ) | | if 0
otherwise

n n n n
n id p id id p id

id n n
id id

X g X V  g (X )
X

X V

+ + +
+

− +

 + × ≠
= 

+
 (33) 

This study uses the pseudo-gradient guided PSO (PGPSO) method for the suggested hybrid 
approach. 
  
 
 

max,ll SS ≤

2

1 max,
∑
=











=

lN

l l

l

S
SSI
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B. Differential Evolution Method 
 Differential evolution (DE) is also a well-known meta-heuristic optimization method used 
for solving complex optimization problems. DE also initializes with a random population. A new 
population is created via three main stages as follows [34]: 
• Mutation stage: In this stage, a new individual is generated based on other random individuals 

as in Eq (34). Thus, the search space of the problem is effectively explored. 
'( ) ( ) ( ) ( )

1 2 3( )n n n n
id r d r d r dX X F X X= + × −  (34) 

where, )(' n
idX is the newly created individuals; r1, r2, and r3 are random indexes of the population; 

and F is the mutation factor selected in [0,1]. 
• Crossover stage: To increase the diversity, this stage mixes the mutant vector )(' n

idX and the 

current solution ( )n
idX  to create a trial individual ''( )n

idX : 



 =≤

=
otherwiseX

D dCR randX
X n

id

rand
n

idn
id )(

5
)('

)('' or if

 (35) 
where CR is the crossover rate in [0,1]; and Drand is a random index of the population. 
• Selection stage: The fitness values are computed for the current and trial individuals. The 

individual with a better fitness value is chosen for the next generation. In this way, a new 
generation has better individuals than the previous one. 

 
C. The Hybrid PGPSO and DE Method 
 In general, PGPSO and DE have their advantages and disadvantages when dealing with 
different optimization problems. PGPSO is capable of finding the near-optimal solution in a short 
time for a considered problem, however, it is not guaranteed to provide high solution quality for 
complex problems. On the contrary, DE can easily find a high-quality solution for small-scale 
problems but may not be able to solve large-scale ones. In other words, it can be said that PGPSO 
has the advantage of good exploration while DE has the advantage of good exploitation. 
Therefore, this study proposes a combination of PGPSO and DE to form a hybrid method. The 
hybrid PGPSO-DE method utilizes the advantages of PGPSO and DE to become an effective 
method to solve complicated optimization problems. The following are the main steps of the 
proposed methods: 
• Initialization: Like other meta-heuristic methods, PGPSO-DE randomly initializes a 

population of Np individuals in their boundaries.  
• Creating the first new generation: Based on the initialized generation, the mechanism of 

PGPSO is used to create the first new generation. The fitness values are calculated for newly 
generated individuals. The individual with the best fitness value is selected for the next 
generation.  

• Creating the second new generation: In this step, the DE method is used to create the second 
new generation. The new individuals are also evaluated via the fitness values to choose the 
best one for the next iteration.   

 
5. Implementation of PGPSO-DE to the SC-TDOPF problem 
 This section describes the implementation of PGPSO-DE to the SC-TDOPF problem for the 
objective of minimizing the total fuel cost. 
 
A.  Initialization of Population 
 In the SC-TDOPF problem, there are two types of variables including control and state 
variables.  In the population of PGPSO-DE, each individual includes the control variables 
described by a vector below: 
 2 3 1 2 1 2 1 2[ , ,..., , , ,..., , , ,..., , , ,..., ]

g g c tid g g gN g g gN c c N NX P P P V V V Q Q Q T T T=  (36) 
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where Pg1 is the real power output of the generator at the slack bus; i = 1, 2, …, N with N = 2Ng 
+ Nc + Nd -1 and d = 1, 2, …, Np with Np is the number of individual in the population. 
Also, the state variables are represented as in Eq. (37).  
 1 1 2 1 2 1 2[ , , ,..., , , ,..., , , ,..., ]

g d lg g g gN l l lN l l lNU P Q Q Q V V V S S S=  (37) 

The position and velocity of each individual are initialized as in Eq. (38) and Eq. (39), 
respectively. 
 (0) min max min

1 ( )id id id idX X rand X X= + × −  (38) 

 (0) min max min
2 ( )id id id idV V rand V V= + × −  (39) 

where max
idX and min

idX are the maximum and minimum values for individual d, respectively; 
max

idV and min
idV denote velocity limits for individual d, respectively, which are calculated by: 

 max max min( )id id idV R X X= × −  (40) 

 maxmin
idid VV −=  (41) 

where R is the scale factor for the velocity. 
 
B. Fitness function 
 Initial population and next created populations are used to solve the power flow problem to 
evaluate the quality of individuals. The fitness value is calculated for each individual via a fitness 
function in the normal case as follows: 

 
(0) lim 2 lim 2

0 1 1 0
1 1

lim 2 2
0 0 ,max

1 1

( ) ( ) ( )

( ) ( )

g g

d l

N N

d i gi p g g q gi gi
i i

N N

v li li s l l
i l

FT F P K P P K Q Q

K V V K S S

= =

= =

= + × − + × −

+ × − + × −

∑ ∑

∑ ∑

 (42) 

where Kp0, Kq0, Kv0, and Ks0 are the penalty factors for the normal case. 
 
For the contingency case, the fitness function is calculated by: 

 (0) (0) lim 2 lim 2 2
_ ,max

1 1 1
( ) ( ) ( )

g d lN N N
s s s

d outage d q gi gi v li li s l l
i i l

FT FT K Q Q K V V K S S
= = =

= + × − + × − + × −∑ ∑ ∑  (43) 

where, Kq, Kv, and Ks are the penalty factors for the outage case, s
giQ is the reactive power output 

of generator i in the contingency case; s
liV  is the voltage at load bus i in the contingency case; 

s
lS  is the apparent power flow in transmission line l in the contingency case. 

In Eq. (42-43), the limitations of state variables are handled by: 

   








<
>

=
otherwise
 if
 if

minmin

maxmax
lim

X
XXX
XXX

X
 (44) 

Where Xlim denotes lim
1gP , lim

giQ , lim
liV , and lim

liS while X denotes Pg1, Qgi, Vli, and Sli. 
 
 C. Overall procedure 
 The overall procedure for the implementation of the proposed PGPSO-DE method to solve 
the SC-TDOPF problem are described by the following steps: 
Step 1: Set PGPSO-DE parameters: Np, Itermax, c1 and c2, R, F, and CR.  
        Perform the contingency analysis to obtain the SI values corresponding to each branch.  
        Select the outage lines corresponding to the highest SI values. 
Step 2: Initialize a random population as described in Section 5.1. 
Step 3: Solve the power flow and calculate the fitness value for each individual in the initial  
        population using Eq. (42). The position of the individual having the best fitness value is  
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        set to Gbest. The initial population and the corresponding fitness function are set to  
       Pbestd and FTd

best, respectively. Set k = 1, k is the iteration counter. 
Step 4: In this step, the mechanism of the PGPSO method is used to create the first new  
       population. The new velocity of individuals is first computed by using Eq. (31). Then the  
       new position of individuals is updated by using Eq. (33). A repair action as in Eq (44) is  
       applied if the new created velocity and position of individuals violate their limits. 
Step 5: Run the power flow using the newly generated population and calculate the fitness  
        function (42) for the normal case, and fitness function (43) for the outage case. 
Step 6: The second new population is created in this step, based on the first population created  
       by the PGPSO mechanism, by using the mutation stage of DE as in Eq. (34). A repair  
       action as in Eq (44) is applied if the new position violates its limits. 
Step 7: The crossover stage of DE is applied to create new individuals from the second new  
       created population using Eq. (35). 
Step 8: Run the power flow using the new individuals generated from the crossover stage and  
       calculate the fitness function (42) for the normal case, and fitness function (43) for the  
       outage case. 
Step 9: The best individuals are selected via the selection stage of DE for the next generation.  
       The fitness values of individuals from the first generated populations are compared to  
       those from the second generated populations. The new individual is selected by: 

 

 ≤

=
otherwiseX

FT FTX
X k

id

k
d

k
d

k
idknew

id )(

)()('')(''
)( if

  (45) 
 Update the new individual ( )new k

dX  and the corresponding fitness value ( )new d
dFT  

accordingly. 
Step 10: The best population is updated in this step. The update of the best position of each 
          individual is described as follows: 
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 Update the corresponding better fitness function best
dFT . Update Pbestd to Gbest. 

Step 11: If the current iteration k is lower than the maximum iteration Itermax, increase k and  
         return step 4. Otherwise, stop. 
 
6. Numerial results 
 The suggested PGPSO-DE has been tested on the IEEE 30-bus system for both the normal 
case and selected outage cases. The fuel cost function is considered with a quadratic function and 
a function with VPEs. The test system has six thermal generating units, four tap changing 
transformers, and 41 transmission lines. Besides, there are nine shunt power compensators at 
buses 10, 12, 15, 17, 20, 21, 23, 24 and 29. The data of the test system and the transmission line 
limits are from [6]. Table A.1 gives the generator data with the quadratic fuel cost function while 
Table A.2 gives the fuel cost coefficients for valve point loading effects. Table A.3 represents the 
limits for the bus voltage and transformer tap settings. Shunt power compensators have a lower 
limit of 0 MVar and an upper limit of 5 MVar. The power flow problem in this study is solved by 
the TDPF toolbox [35]. 
 
Table 1. Control parameters of PGPSO-DE for the TDOPF with normal and contingency cases 

Parameters Itermax Np c1 c2 R F CR 
Case 1 150 10 2.05 2.05 0.15 0.7 0.5 
Case 2 200 50 2.05 2.05 0.15 0.7 0.5 
Case 3 250 10 2.05 2.05 0.15 0.7 0.5 
Case 4 300 20 2.05 2.05 0.15 0.7 0.5 
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 For implementing the proposed PGPSO-DE method to the TDOPF problem, its control 
parameters are selected for different cases of normal and contingency as shown in Table 1 as 
follows: 
Case 1: Normal case with the quadratic objective function. 
Case 2: Normal case with the objective function taking into account VPEs. 
Case 3: Selected outage case with the quadratic objective function. 
Case 4: Selected outage case with the objective function taking into account VPEs. 
The code of the suggested PGPSO-DE method was written in Matlab software. To find the best 
solution, each case was run in 50 separate trials. 
 
A. Normal case 
 The proposed PGPSO-DE approach is implemented to deal with the normal TDOPF problem. 
The objective function is taken into account the quadratic function and VPEs. 
 
A.1. Quadratic objective function 
 To verify the effectiveness of the proposed PGPSO-DE method, it is firstly tested on the IEEE 
30-bus system to solve the conventional OPF problem with the quadratic objective function. For 
this case, the number of individuals Np of PGPSO-DE is set to 50 for fair appraisal since most 
compared algorithms also set this parameter to 50. The fuel costs obtained from PGPSO-DE 
including minimum, average and maximum values are compared to those from other optimization 
algorithms as shown in Table 2. It can be seen that the minimum fuel cost of PGPSO-DE is better 
than other compared methods and close to GWO [14] and IKHA [16]. In addition, the average 
fuel cost of PGPSO-DE is the best value among compared methods and the standard deviation is 
rather small. Hence, the proposed method provides a very high and robustness solution quality in 
this case. It is further confirmed as seen from Figure 2 which shows the algorithm’s robustness 
for 50 independent runs. Figure 3 shows the convergence characteristic of PGPSO-DE for the 
IEEE 30 bus test system with the conventional OPF problem. The minimum fuel cost achieved 
by the PGPSO-DE method is 800.4141 ($/h). 
 
Table 2. Result comparison for the IEEE 30 bus test system with the conventional OPF problem 

Algorithms 
Minimum 
Fuel cost 

($/h) 

Average 
Fuel cost 

($/h) 

Maximum 
Fuel cost 

($/h) 

Standard 
deviation 

Parameters 
Setting 

Np Itermax 

ABC [12] 800.6600 800.8715 801.8674 - 50 200 
ARCBBO [13] 800.5159 800.6412 800.9262 - 50 200 
GWO [14] 801.413 801.655 801.958 0.1129 - 300 
MSA [15] 800.5099 - - - 50 100 
IKHA [16] 800.4143 - - - 30 500 
IMFO [17] 800.3848* - - - 50 500 
GABC [27] 800.4401 800.6390 800.7959 1.58142 50 100 
CWOA [28] 800.1998* - - - 50 100 
PGPSO-DE 800.4141 800.5708 802.8181 0.3978 50 150 

*Violated solution 
 
 To investigate the effect of temperature, the TDOPF problem is performed with each value 
of temperature rise (TRatedRise). The base temperature (TBase) is selected as 100 oC. The ambient 
temperature (TAmp) and the reference temperature (TRef) are selected as 25 oC. The temperature 
constant (TF) is 228.1 oC because all conductors are considered hard-drawn aluminium [1]. For 
a fair comparison with GABC [27], the upper voltage limit of load bus, in this case, is set to 1.06 
p.u. as the same in [27]. Table 3 presents the minimum fuel cost and the power loss obtained by 
the proposed PGPSO-DE method corresponding to each value of TRatedRise for the IEEE 30 bus 
test system. It can be observed that PGPSO-DE offers a better solution than GABC [27] and 
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CWOA [28]. For 0 oC temperature rise, the fuel cost and the real power loss obtained by PGPSO-
DE are 799.8667 ($/h) and 8.8670 MW, respectively. These values become 802.9909 ($/h) and 
9.4663 MW, respectively, for 100 oC temperature rise. For the 30 oC temperature rise, the 
increase in fuel cost and power loss are 0.14% and 2.61%, respectively. Figure 4 depicts the 
effect of temperature rise on fuel cost and power loss. When the temperature rise (TRatedRise) 
increases, the fuel cost and power loss also increase. In general, the fuel cost increase by 0.04% 
approximately for every 10 oC temperature rise. Figure 5 depicts the convergence characteristic 
of PGPSO-DE for the IEEE 30 bus system with the quadratic objective function corresponding 
to TRatedRise = 30 oC. It can be observed that the objective function converges smoothly to the near 
optimal solution. 
 

 
Figure 2. Fuel cost of fifty independent runs for the conventional OPF problem  

for the IEEE 30 bus system 
 
 

Table 3. Fuel cost and power loss obtained for the TDOPF problem  
with the quadratic objective function 

 Fuel cost ($/h) Power loss (MW) 
TRatedRise GABC [27] CWOA [28] PGPSO-DE GABC [27] CWOA [28] PGPSO-DE 

0 800.0627 800.0227 799.8667 8.912071 8.7731 8.8670 
10 800.4531 800.4010 800.2735 9.029315 8.9258 8.9716 
20 800.8292 800.7836 800.6067 9.142254 9.0924 9.0335 
30 801.1922 801.1336 801.012 9.251205 9.1346 9.1047 
40 801.5429 801.4729 801.3203 9.356453 9.2749 9.1788 
50 801.8822 801.8016 801.6144 9.458257 9.3417 9.1934 
60 802.2109 802.1204 801.941 9.556852 9.4663 9.2650 
70 802.5297 802.4294 802.1624 9.652453 9.5133 9.3602 
80 802.8392 802.7296 802.4328 9.745256 9.6674 9.3678 
90 803.14 803.0297 802.7393 9.83544 9.7513 9.4046 
100 803.4327 803.3224 802.9909 9.923173 9.8017 9.4663 
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Figure 3. Convergence characteristic of PGPSO-DE for the IEEE 30 bus system  

with the conventional OPF problem. 
 

 
Figure 4. Temperature rise effect on fuel cost and power loss for the TDOPPF problem with 

the quadratic objective function. 
 

 
Figure 5. Convergence characteristic of PGPSO-DE for the TDOPF problem with the quadratic 

objective function corresponding to TRatedRise = 30 oC. 
 

A.2. Objective function considering VPEs. 
 The valve point loading effects is taken into account in the objective function of the TDOPF 
problem in this case. Table 4 shows the obtained results of fuel cost and power loss for the rise in 
temperature for the TDOPF problem with VPEs. For 0 oC temperature rise, the fuel cost obtained 
by the PGPSO-DE method is 919.825 ($/h) and the real power loss is 9.8902 MW. For 30 oC 
temperature rise, the increase in fuel cost is 0.22% and 4.12 % for power loss. The obtained fuel 
cost becomes 925.5945 ($/h) and the real power loss is 11.3242 MW when the temperature rise 
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TRatedRise is 100 oC. Figure 6 illustrates the effect of temperature rise on fuel cost and power loss 
for the IEEE 30 bus system with valve point loading effects. The general trend is for increasing 
fuel cost and power loss as the temperature rises. Figure 7 shows the convergence characteristic 
of PGPSO-DE for the IEEE 30 bus system with the valve point loading effects for TRatedRise = 30 
oC. It can be observed that the objective function converges to the near-optimal solution after 150 
iterations. 
 

Table 4. Fuel cost and power loss obtained for the TDOPF problem with VPEs 
TRatedRise Fuel cost ($/h) Power loss (MW) 

0 919.8525 9.8902 
10 920.7833 10.0651 
20 920.8674 10.1003 
30 921.8648 10.3154 
40 922.9310 10.4745 
50 922.9798 10.6180 
60 923.5945 10.7661 
70 923.6734 10.8103 
80 924.4393 11.0610 
90 924.5678 11.1348 
100 925.0736 11.3242 

 

 
Figure 6. Temperature rise effect on fuel cost and power loss  

for the TDOPF problem with VPEs. 
 

 
Figure 7. Convergence characteristic of PGPSO-DE for the IEEE 30 bus system  

with VPEs corresponding to TRatedRise = 30 oC 
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B. Outage cases 
 To consider the outage of the transmission line, contingency analysis is carried out before 
solving the SC-TDOPF problem. The SI value is determined for each N-1 outage line.  
 

Table 5. Contingency analysis of the IEEE 30 bus system 
Outage line Overload line Line flow 

(MVA) 
Line flow limit 

(MVA) 
Overload rate 

(%) Severity index 

1-2 

2 307.0136 130 236.1643 

16.3035 4 281.3522 130 216.4248 
7 178.4014 90 198.2238 
10 46.5144 32 145.3575 

1-3 

1 274.0264 130 210.7895 

9.4474 3 86.1203 65 132.4928 
6 92.7203 65 142.6466 
10 35.2567 32 110.1773 

3-4 

1 271.0750 130 208.5192 

9.2390 3 84.8816 65 130.5871 
6 91.7672 65 141.1803 
10 34.9449 32 109.2027 

2-5 

1 165.4421 130 127.2632 

8.5614 
3 74.6652 65 114.8695 
6 102.9619 65 158.4030 
7 123.6755 90 137.4172 
10 35.4150 32 110.6719 

4-6 
1 200.5759 130 154.2892 

5.7600 6 98.5645 65 151.6377 
15 67.5536 65 103.9286 

 
 The IEEE 30-bus system has 41 transmission lines, thus, there are 41 obtained SI values. The 
severe cases with the highest SI values will be selected as outage cases for the SC-TDOPF 
problem. In this study, five transmission lines 1-2, 1-3, 3-4, 2-5 and 4-6 are determined as severe 
cases since their SI values are higher than the other transmission lines. The contingency analysis 
of these five outage cases is given in Table 5, where each of the severe cases is considered in one 
outage case.The obtained results for both cases with a quadratic objective function and a function 
of VPEs are reported in the following subsections: 
 
B.1. Quadratic objective function 
 For the SC-TDOPF problem with the quadratic function, the fuel cost and real power loss 
obtained by the proposed PGPSO-DE method corresponding to each value of TRatedRise are 
presented in Table 6 for the outage lines 1-2, 1-3, and 3-4, and in Table 7 for the outage lines 2-5 
and 4-6. For 0 oC temperature rise, the proposed PGPSO-DE method provides the minimum fuel 
costs for outage lines 1-2, 1-3, 3-4, 2-5, and 4-6 are 823.7949 ($/h), 820.4042 ($/h), 819.5505 
($/h), 806.5713 ($/h), and 801.4946 ($/h), respectively. These values, in order, become 828.0905 
($/h), 823.3478 ($/h), 822.6376 ($/h), 808.7184 ($/h), and 804.1846 ($/h) for 100oC temperature 
rise. For the real power loss, the proposed PGPSO-DE method provides the values of 6.1357 MW, 
6.3038 MW, 6.6004 MW, 7.4138 MW, and 8.3652 MW for 0oC temperature rise, and 6.3978 
MW, 6.6481 MW, 7.2708 MW, 7.9547 MW, and 9.1687 for 100oC temperature rise 
corresponding to the outage lines 1-2, 1-3, 3-4, 2-5, and 4-6.  For 30oC temperature rise, the 
increase in fuel cost and real power loss are 0.17% and 0.46 % for outage line 1-2, 0.11 % and 
1.81% for outage line 1-3, 0.13 % and 2.49% for outage line 1-3, 0.1 % and 2.28% for outage line 
2-5, and 0.12 % and 3.58% for outage line 4-6, respectively. Figure 8 shows the effect of 
temperature rise on fuel cost and power loss for the SC-TDOPF problem with the quadratic 
objective function. It can be seen that the fuel cost and power loss increase following the increase 
of TRatedRise. Figure 9 depicts the convergence characteristic of PGPSO-DE for outage lines 1-2, 1-
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3, 3-4, 2-5, and 4-6 for TRatedRise = 30 oC. The convergence characteristics yielded by the proposed 
method for those cases are found to be stable. The optimal solution obtained by the proposed 
method is given in Appendix. 
 

Table 6. Fuel cost and power loss obtained for the SC-TDOPF problem with quadratic 
objective function for outage lines 1-2, 1-3, and 3-4. 

Outage 
case Line 1-2 Line 1-3 Line 3-4 

TRatedRise 
Fuel cost 

($/h) 

Power 
loss 

(MW) 

Fuel cost 
($/h) 

Power 
loss 

(MW) 

Fuel cost 
($/h) 

Power 
loss 

(MW) 
0 823.7949 6.1357 820.4042 6.3038 819.5505 6.6004 
10 824.4885 6.2004 821.0448 6.4217 819.8601 6.6526 
20 824.9029 6.2339 821.1104 6.3891 820.2708 6.7493 
30 825.2031 6.1641 821.3032 6.4199 820.6233 6.7688 
40 825.6662 6.2837 821.8879 6.4684 820.8518 6.7809 
50 826.0028 6.2699 822.1185 6.5183 821.1988 7.0280 
60 826.5077 6.3237 822.3815 6.5540 821.5800 6.9197 
70 826.9197 6.3724 822.4503 6.4644 821.9318 6.9503 
80 827.3582 6.2803 822.5881 6.5298 822.0921 6.9387 
90 827.6874 6.2975 822.9092 6.6259 822.5010 7.0695 

100 828.0905 6.3978 823.3478 6.6481 822.6376 7.2708 
 
 

 
Line 1-2 

 
Line 1-3 

 
Line 3-4 

 

 
Line 2-5 

 
Line 4-6 

Figure 8. Temperature rise effect on fuel cost and power loss for the SC-TDOPPF problem 
with the quadratic objective function. 
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Figure 9. Convergence characteristic of PGPSO-DE for the SC-TDOPF problem with the 

quadratic objective function corresponding to TRatedRise = 30 oC. 
 

Table 7. Fuel cost and power loss obtained for the SC-TDOPF problem with quadratic 
objective function for outage lines 2-5 and 4-6. 

Outage case Line 2-5 Line 4-6 

TRatedRise 

Fuel cost ($/h) Power loss 
(MW) 

Fuel cost ($/h) Power loss 
(MW) 

0 806.5713 7.4138 801.4946 8.3652 
10 806.7956 7.5068 801.8090 8.5623 
20 807.0974 7.5545 802.0934 8.6289 
30 807.3633 7.5871 802.4289 8.6759 
40 807.5542 7.6766 802.6870 8.7421 
50 807.8132 7.7412 802.9846 8.8857 
60 808.0300 7.8139 803.2857 8.9063 
70 808.1800 7.8076 803.5020 8.9634 
80 808.3591 7.9252 803.6682 9.0475 
90 808.6439 7.9897 803.9590 9.1169 
100 808.7184 7.9547 804.1846 9.1687 

 
B.2. Objective function considering VPEs. 
 In this case of the SC-TDOPF problem, the objective function comprises VPEs, which makes 
the SC-TDOPD becomes a non-convex optimization problem. Table 8 tabulates the fuel cost and 
power loss corresponding to each value of TRatedRise for the outage lines 1-2, 1-3, and 3-4. Similarly, 
Table 9 presents the obtained results for the outage lines 2-5 and 4-6. The fuel costs obtained by 
PGPSO-DE for 0oC temperature rise are 1034.8118 ($/h), 1030.2897 ($/h), 1025.6910 ($/h), 
962.5737 ($/h), 952.1968 ($/h) for outage lines 1-2, 1-3, 3-4, 2-5, and 4-6, respectively. These 
values are 1035.8552 ($/h), 1034.2135 ($/h), 1030.9578 ($/h), 961.7055 ($/h), and 954.3138 ($/h) 
for 100oC temperature rise. For 30oC temperature rise, the increases in fuel cost are 0.05%, 0.16%, 
0.18%, 0.03%, and 0.09% for outage lines 1-2, 1-3, 3-4, 2-5, and 4-6, respectively. 
Regarding the real power loss, for 0oC temperature rise, PGPSO-DE achieves the values of 5.3209 
MW, 5.9945 MW, 6.3729 MW, 8.0992 MW, and 8.3652 MW for the outage lines 1-2, 1-3, 3-4, 
2-5, and 4-6. For 100oC temperature rise, the values of power loss become 5.5706 MW, 6.3244 
MW, for 6.8565 MW, 8.7871 MW, and  7.8437 corresponding to the outage lines 1-2, 1-3, 3-4, 
2-5, and 4-6. For 30oC temperature rise, the increases in power loss are 1.63%, 2.47%, 2.90%, 
2.14%, and 2.82% for corresponding outage lines. 
 Figure 10 shows the effect of temperature rise on fuel cost and power loss for the SC-TDOPF 
problem with valve point loading effects for outage lines 1-2, 1-3, 3-4, 2-5, and 4-6. It can be seen 
that the fuel cost and power loss increase with the increase of TRatedRise. Figure 11 illustrates the 
convergence characteristic of PGPSO-DE for outage cases for TRatedRise = 30oC. It can be observed 
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that the proposed method converges smoothly to the near-optimal solution for outage lines 1-2, 
1-3, 3-4, 2-5, and 4-6. The optimal solution obtained by PGSO-DE for this case is given in  
 

 
Line 1-2 

 
Line 1-3 

 
Line 3-4 

 
Line 2-5 

 
Line 4-6 

Figure 10. Temperature rise effect on fuel cost and power loss  
for the SC-TDOPPF problem with VPEs. 

 
Appendix. 

Table 8. Fuel cost and power loss obtained for the SC-TDOPF problem with VPEs  
for outage lines 1-2, 1-3, and 3-4. 

Outage 
case Line 1-2 Line 1-3 Line 3-4 

TRatedRise 
Fuel cost 

($/h) 

Power 
loss 

(MW) 

Fuel cost 
($/h) 

Power 
loss 

(MW) 

Fuel cost 
($/h) 

Power 
loss 

(MW) 
0 1034.8118 5.3209 1030.2897 5.9945 1025.6910 6.3729 

10 1034.9668 5.3466 1030.8810 6.0989 1026.3124 6.4584 
20 1035.0830 5.3813 1031.1819 6.0967 1026.8841 6.5023 
30 1035.2897 5.4093 1031.9249 6.1463 1027.5598 6.5637 
40 1035.3090 5.4237 1032.1796 6.2157 1027.8454 6.5829 
50 1035.3977 5.4380 1032.3729 6.1726 1028.4009 6.6460 
60 1035.5541 5.5031 1032.9630 6.2767 1029.0285 6.7297 
70 1035.6378 5.5070 1033.2300 6.2698 1029.4535 6.7469 
80 1035.6697 5.5015 1033.7299 6.3547 1030.0198 6.8218 
90 1035.8174 5.5395 1033.8801 6.3397 1030.5906 6.7837 
100 1035.8552 5.5706 1034.2135 6.3244 1030.9578 6.8565 
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Figure 11. Convergence characteristic of PGPSO-DE for the SC-TDOPF problem with the 

VPEs corresponding to TRatedRise = 30 oC. 
 

Table 9. Fuel cost and power loss obtained for the SC-TDOPF problem with VPEs for outage 
lines 2-5 and 4-6. 

Outage case Line 2-5 Line 4-6 

TRatedRise 
Fuel cost 

($/h) 
Power loss 

(MW) 
Fuel cost 

($/h) 
Power loss 

(MW) 
0 961.4261 8.0992 952.1968 7.2400 
10 961.4625 8.1205 952.6466 7.3755 
20 961.7055 8.1547 952.7685 7.4288 
30 961.7517 8.2767 953.0724 7.4499 
40 961.8854 8.3563 953.2266 7.5389 
50 961.9792 8.3842 953.3388 7.5391 
60 962.0529 8.6210 953.5756 7.6115 
70 962.4567 8.6214 953.7074 7.6258 
80 962.5144 8.7538 953.9941 7.7289 
90 962.5737 8.7589 954.1395 7.7605 

100 962.7802 8.7871 954.3138 7.8437 
 
 

7. Conclusion 
 This study has investigated the OPF problem considering the temperature effect. The 
objective function has been examined with the quadratic cost function and a function comprising 
of VPEs. In addition, the security constraint has also been considered for the OPF problem. 
Considering the temperature effect increases the accuracy of the OPF problem. The SC-TDOPF 
is a non-linear, non-convex, and large-scale problem which is a real challenge for solution 
methods. In this paper, the proposed PGPSO-DE method has been successfully dealt with the 
considered SC-TDOPF problem. The proposed method has been tested on the IEEE 30-bus 
system with normal and outage cases for objective functions of quadratic and valve point effects. 
The obtained results have shown that the proposed method is effective in dealing with the SC-
TDOPF problem with quadratic and VPEs of fuel cost function. As a result, the suggested 
PGPSO-DE method could be a favourable method for dealing with the large-scale and difficult 
optimization problems in power systems. The large-scale test systems and other complex 
objective functions would be examined in future works for the TDOPF problem. 
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9. Appendix 
Table A.1. Cost coefficients of thermal units with with a quadratic  

cost function in the IEEE-bus system 

Unit Pi,max 
(MW) 

Pi,min 
(MW) 

Qi,max 
(MVAr) 

Qi,min 
(MVAr) 

Cost coefficients 
ai ($/h) bi ($/MWh) ci ($/MW2h) 

1 200 50 200 -20 0 2.00 0.00375 
2 80 20 100 -20 0 1.75 0.01750 
5 50 15 80 -15 0 1.00 0.06250 
8 35 10 60 -15 0 3.25 0.00834 

11 30 10 50 -10 0 3.00 0.02500 
13 40 12 60 -15 0 3.00 0.02500 

 
Table A.2. Cost coefficients of of thermal units with VPEs in the IEEE 30-bus system 

Unit Pi,max 
(MW) 

Pi,min 
(MW) 

Cost coefficients 

ai ($/h) bi ($/MWh) ci ($/MW2h) ei ($/h) fi (1/MW) 
1 200 50 150 2.00 0.00160 50 0.063 
2 80 20 25 2.50 0.01000 40 0.098 
5 50 15 0 1.00 0.06250 0 0 
8 35 10 0 3.25 0.00834 0 0 

11 30 10 0 3.00 0.02500 0 0 
13 40 12 0 3.00 0.02500 0 0 

 
Table A.3. Limits transformer tap setting and bus voltage for the IEEE 30-bus system 

 Lower limit (p.u.) Upper limit (p.u.) 
Transformer tap setting (Tk) 0.90 1.10 

Slack bus voltage (Vg1) 0.90 1.10 
Generator bus voltage (Vgi) 0.90 1.10 

Load bus voltage (Vli) 0.95 1.05 
 

Table A.4. Optimal solutions by HPSO-DE for TDOPD problem (Normal and Outage cases) 
with quadratic fuel cost function corresponding to TRatedRise = 30 oC 

Optimal 
solution 

Normal 
case 

Outage 
line 1-2 

Outage 
line 1-3 

Outage 
line  3-4 

Outage 
line 2-5 

Outage 
line 4-6 

PG1 (MW) 176.3517 122.8073 127.3085 129.4705 157.0478 169.3141 
PG2 (MW) 48.8281 62.7836 61.2513 60.7798 42.4111 47.1001 
PG5 (MW) 21.7061 25.6834 24.4011 25.3942 24.9709 21.6438 
PG8 (MW) 21.5351 35.0000 35.0000 34.8064 34.5102 28.6375 
PG11 (MW) 12.0837 22.0504 21.1753 20.3922 17.1942 13.3805 
PG13 (MW) 12.0000 21.2393 20.6837 19.3256 14.8529 12.0000 
VG1 (p.u.) 1.0945 1.0740 1.0802 1.0494 1.0770 1.0860 
VG2 (p.u.) 1.0746 1.0556 1.0581 1.0292 1.0587 1.0669 
VG5 (p.u.) 1.0429 1.0287 1.0282 1.0048 1.0244 1.0389 
VG8 (p.u.) 1.0469 1.0390 1.0368 1.0128 1.0334 1.0394 
VG11 (p.u.) 1.0465 1.0830 1.1000 1.0819 1.0630 1.0813 
VG13 (p.u.) 1.0561 1.0656 1.0480 1.0533 1.0735 1.0376 

QC10 (MVAr) 5.0000 0.0000 1.9495 0.0146 0.1535 3.7475 
QC12 (MVAr) 2.1018 0.0000 2.5254 1.7606 4.1345 0.8124 
QC15 (MVAr) 3.9448 3.5929 2.3804 3.0843 0.1873 1.9432 
QC17 (MVAr) 5.0000 4.6862 4.5985 5.0000 1.9768 5.0000 
QC20 (MVAr) 3.2950 3.8692 4.5061 3.8157 4.1076 0.0019 
QC21 (MVAr) 4.9877 2.6067 0.4104 4.9866 4.2745 5.0000 
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Optimal 
solution 

Normal 
case 

Outage 
line 1-2 

Outage 
line 1-3 

Outage 
line  3-4 

Outage 
line 2-5 

Outage 
line 4-6 

QC23 (MVAr) 5.0000 4.0042 4.2849 1.4906 4.2358 4.1888 
QC24 (MVAr) 5.0000 1.7054 5.0000 5.0000 5.0000 5.0000 
QC29 (MVAr) 5.0000 2.6949 1.5807 0.2004 1.4451 4.1379 

T11 (p.u.) 1.0574 1.0014 1.0811 1.0119 1.0436 1.0610 
T12 (p.u.) 0.9000 0.9916 0.9227 0.9361 0.9031 0.9384 
T15 (p.u.) 0.9713 0.9958 0.9683 1.0093 1.0099 0.9450 
T36 (p.u.) 0.9875 0.9740 0.9724 0.9621 0.9778 0.9949 

 
Table A.5. Optimal solutions by HPSO-DE for TDOPD problem (Normal and Outage cases) 

with VPEs corresponding to TRatedRise = 30 oC 
Optimal 
solution 

Normal 
case 

Outage 
line 1-2 

Outage 
line 1-3 

Outage 
line  3-4 

Outage 
line 2-5 

Outage 
line 4-6 

PG1 (MW) 149.7332 99.8696 127.5941 129.8608 149.7352 149.7283 
PG2 (MW) 52.0594 80.0000 52.0571 52.0565 51.2808 52.0546 
PG5 (MW) 22.3130 26.8057 27.6889 26.7472 27.1427 24.3538 
PG8 (MW) 33.2914 35.0000 35.0000 35.0000 35.0000 31.7920 
PG11 (MW) 16.6501 24.4057 25.4596 23.6783 16.6122 16.4309 
PG13 (MW) 17.0357 22.7283 21.7466 22.6209 12.0004 16.4903 
VG1 (p.u.) 1.0694 1.0706 1.0809 1.0492 1.0848 1.0727 
VG2 (p.u.) 1.0492 1.0596 1.0580 1.0262 1.0577 1.0576 
VG5 (p.u.) 1.0137 1.0307 1.0278 1.0020 0.9906 1.0327 
VG8 (p.u.) 1.0337 1.0408 1.0285 1.0091 1.0261 1.0429 
VG11 (p.u.) 1.0827 1.0964 1.0767 1.0759 0.9919 1.0935 
VG13 (p.u.) 1.0781 1.0428 1.0641 1.0677 1.1000 1.0469 

QC10 (MVAr) 1.4073 2.7162 5.0000 2.9103 5.0000 2.6873 
QC12 (MVAr) 0.4978 3.2551 0.0469 2.3769 1.1882 3.2422 
QC15 (MVAr) 2.2904 4.9133 4.3504 3.1394 2.0455 3.6043 
QC17 (MVAr) 2.6629 4.5545 4.2242 2.6968 5.0000 4.0109 
QC20 (MVAr) 1.0981 2.2348 4.9931 3.2844 5.0000 4.9691 
QC21 (MVAr) 4.7504 4.6913 0.0358 3.6180 3.9394 3.0023 
QC23 (MVAr) 2.8429 5.0000 0.6435 0.0036 2.4749 4.9121 
QC24 (MVAr) 3.8930 2.7292 5.0000 5.0000 2.7409 4.0099 
QC29 (MVAr) 3.4787 2.7533 2.5568 3.0209 2.3062 2.5498 

T11 (p.u.) 1.0318 1.0837 0.9922 0.9493 1.0928 1.0135 
T12 (p.u.) 0.9000 0.9114 0.9887 1.0368 1.0277 1.0067 
T15 (p.u.) 1.0812 0.9761 0.9989 0.9857 1.0035 0.9791 
T36 (p.u.) 0.9690 0.9747 0.9684 0.9673 1.0316 0.9812 
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