A Golden Section Search Algorithm Based Loss Minimization for Induction Motor Drive

Kirti Rai, Subodh Behari Lal Seksena, and Amarnath Thakur

Electrical and Electronics Engineering
National Institute of Technology, Jamshedpur, India
kirtisinha2809@yahoo.in

Abstract: The present manuscript proposes a loss model controller (LMC) based on the Golden Section Search (GSS) algorithm for efficiency optimization of induction motor (IM) drives. The vector controlled or field-orientated induction motor (IM) drive system operates at rated flux in all the speed range. Even at low load, where the flux demand for IM operation is low, the drive is operated at rated flux and thus, unnecessarily energy is wasted. Therefore, to overcome this problem, the proposed algorithm searches for the optimal reference value of flux component of current (i_{d_s}) for which the electrical input power of the system should be minimal. The search algorithm is very fast and the algorithm has no effect on parameter variation and also no additional hardware machinery for hardware implementation is required. In addition, it does not require the knowledge of speed and torque in the searching process, and is insensitive to motor parameter variations. The simulation results for various speed patterns and operating conditions are presented in this paper. Stability study of the whole drive system is also carried out utilizing the optimizing scheme. The simulation results demonstrate the effectiveness of the proposed algorithm and also the experimental validation of same on dSPACE-1104 based laboratory prototype has confirmed the robustness of the proposed algorithm in terms of optimal efficiency.

Keywords: AC motor drives, Induction motor drives, Estimation, Optimization, Losses Minimization, Golden Section Search (GSS).

NOMENCLATURE

v_r,v_s: stator and rotor voltages (V)
v_{ds},v_{qs}: d and q-axis components of stator voltage (V)
$i_{ds},i_{qs},i_{dt},i_{qt}$: d and q-axis components of stator and rotor current (A)
$\psi_{ds},\psi_{qs},\psi_{dt},\psi_{qt}$: d and q-axis components of stator and rotor flux (Wb)
ψ_{dn},ψ_{qn}: d and q-axis components of mutual flux (Wb)
L_s, L_m, L_r: stator, mutual and rotor inductances (H)
R_s, R_f, R_fe: stator, rotor, and iron loss resistance (Ω)
i_0, i_{fe}, i_m: no-load, iron loss, and magnetizing current (A)
ω_s, ω_r: synchronous speed, and rotor speed(rad/s)
$\sigma = 1 - \frac{L_m}{(L_s+L_r)}$: total leakage factor
τ_r: rotor circuit time constant (s)
A, B, C: matrices for state-space representation
c_{ij}: (i,j)th element of $adj(A)$
s, p: estimated, reference quantity, stationary quantity
\hat{s}: time-derivative operator

Received: April 14th, 2018. Accepted: March 16th, 2019
DOI: 10.15676/ijeei.2019.11.1.9
1. Introduction

Induction motors specially squirrel-cage type are widely used in industries because of robustness, good power/mass relation, low cost and easy maintenance throughout its life cycle. IMs are easy to maintain due to their simple structure, reliability, high efficiency, and low cost. The distinction of IM has led to its global increase in sales of up to 85 percent in electrical motors [1] [2] [3]. However, more than half of the electric energy consumed by industrial facilities is due to the use of induction motors. With the massive use of induction motors, electrical energy consumption has increased exponentially over the years. They have a low power factor at partial load if operated at rated flux, hence poor efficiency causes wastage of energy, increased operational cost and leads to significant loss of revenue if run for long durations. Because of the huge number of units operating worldwide, even a minute efficiency improvement may lead to significant environmental and economic contributions.

In high dynamic performances, control schemes used in industrial applications like vector control and direct torque control, the flux is usually maintained constant equal to its nominal value; in this situation the induction motor runs efficiently around the nominal operating point [2], [3]. When the load is reduced considerably, the losses are greatly increased and the electrical energy consumption is then highly affected [3-6]. Energy saving in induction motor drives aims at controlling the motor to match the load requirement but with minimum loss. So far, many approaches have been developed in order to obtain a highly efficient IM drives. It is one of the most attractive and active subjects in the field of motion control. The techniques allowing efficiency improvement can be divided into two categories. The first category is so called loss model controllers (LMC) and the second one is the search controllers approach (SC) [4], [5].

The SCs offers the advantage to be robust against the parameters variation but have a very sluggish response whereas the LMCs are very fast but parameters dependent. In other hand the LMCs to be accurate. The model that will be used to drive the LMC algorithm must be extended to include all the loss components, such as: iron loss, copper loss, stray load loss, etc. this problem might be tackled, if necessary using online optimization algorithm.

In last few decades, huge efforts are put forward by both developed and developing countries in the line of energy-saving. The electric motors are the largest consumer of total electricity produced globally (nearly 65-70%) [6], [7]. Precisely, out of this share of percentage, the three-phase induction motors (IMs) of different capacities (ranging from few Hp to 100 Hp) utilizes approximately 85-90% of this electricity. Moreover, The IM drives have an annual expansion rate of 1.5% in industrial sector and 2.2% in tertiary sector for electricity consumption [8]. Since, a huge quantity of IM drive are operational worldwide and every year there is definite positive increase in their numbers, even a small improvement in efficiency by minimizing the losses will significantly have a good impact on saving of revenue, fuel consumption and other associated factors [9]. According to the reports available, every 1% improvement in motor efficiency might lead to savings of over $1 billion per annum in energy prices, the consumption of coal is reduced by 5.4-9.1 million tons per annum and further bringing down greenhouse emission by nearly 13.6-18.1 million tons [10].

Minimization of loss in the induction motor is directly related to the choice of the flux level. But extreme minimization causes a high copper loss [11]. For constant speed operation, if torque is variable then flux have to vary, to improve the drive efficiency. A number of energy optimization strategies such as simple state control [12], search control [13] and loss model based control [14] for IM drive are found in the literature. The loss model based control consists of computing losses by using the machine model and selecting a flux level that can be used to minimize the losses. The second category is the power-measure-based approach, also known as search controllers (SCs), in which the flux is decreased until the electrical input power settles down to the lowest values for a given torque and speed [15], [16], [17].

In the present work, GSS based algorithms are used to minimize the drive loss for IM. A performance analysis of the IM drive system is carried out using GSS based algorithm in different operating conditions. The drive system consists of an energy optimization algorithm
based on the power loss of drive and speed error signal to generate optimal value of i_{ds}^* and hence optimal rotor flux.

The paper is organized in seven sections. In section-2, the loss minimization scheme for IM is discussed. Section-3 discusses the GSS method concept and energy optimization techniques for IM drive. The measurement of input power is discussed in Section-4. Section-5 briefly explains the implementation of the GSS algorithm for loss minimization of the IM drive system. The system stability analysis using Bode plots are detailed in section-6. Simulation results are presented in section-7. Section-8 includes the experimental validation of simulation results. Finally, section-9 concludes the work carried out.

2. Loss Minimization Mechanism

The loss minimization algorithm is based on searching optimal value of the flux component of stator current (i_{ds}), for which the input power of the system can be minimal. The input power can be calculated as the product of the measured DC voltage (V_{dc}) and DC current (I_{dc}) as follow:

$$P_{in} = V_{dc} \cdot I_{dc}$$ \hspace{1cm} (1)

The efficiency of machine can be defined as the ratio of the mechanical output power to the electrical input power. Therefore, for increasing the efficiency of a machine, the electrical input power can be optimized to reduced value by minimizing the total losses. Thus, the loss minimization can be accomplished by adjusting the flux level through the reference flux component current (i_{ds}^*). For the generation of reference flux current, the techniques for the loss minimization is divided into two categories [18]. The first category is called as loss-model based approach [18], [19], [20], [21]. In this method, the loss is computed by using the machine model and selecting the flux level that minimizes the losses. The second method is power based approach, known as search controllers (SC), in which the flux is decreased until the electrical input power is minimized to the optimal lowest level. SCs offers optimum efficiency based on the exact measurement of power input and is independent of the machine parameters [22], [23], [24].

3. Golden Section Search Algorithm

In GSS based algorithm, the maximum value of the flux current equal to its rated value ($i_{ds max} = i_{ds}$) is defined and the minimal value equal to αi_{ds}, where $\alpha = (-0.5)$ depending on load levels. The algorithm calculates the flux current in the interval between ($i_{ds min}, i_{ds max}$) which is fed to the control system to reduce the total input power of the drive. The input power is calculated in (1).

The new values of the reference flux current (i_{ds}) are calculated using two golden sections F_1 and F_2 calculated as:

$$F_1 = \frac{\sqrt{5} - 1}{2} = 0.618 \text{ and } F_2 = \frac{3 - \sqrt{5}}{2} = 0.382$$ \hspace{1cm} (2)

The algorithm calculates two values of the reference flux current (i_{ds1}^*, i_{ds2}^*) in the interval ($i_{ds min}, i_{ds max}$) using golden sections. The input power corresponding to these two currents levels are calculated as $P(i_{ds1}^*)P(i_{ds2}^*)$ as depicted in (1). The reference flux current (i_{ds1}^*, i_{ds2}^*) consequently re-calculated and their corresponding values of input power are re-measured and re-evaluated. The search procedure repeats itself until the desired accuracy is met.
where ε_i is the flux current tolerance. The reference flux current final value is calculated by averaging the values of i_{ds1}^* and i_{ds2}^* as

$$i_{ds}^* = \frac{i_{ds1}^* + i_{ds2}^*}{2}$$

Figure 1. Flowchart of loss minimization by GSS
The complete implementation process of GSS algorithm is depicted in flowchart (Figure 1). The GSS algorithm is fast insensitive to motor parameter variations. The technique comprises of all the losses including the loss in inverter, since the power entering to the system is measured and used in the optimization algorithm.

A. Loss Model of Induction Motor

The IM drive model with iron loss (Figure 2) is given by following equations as [23], [25]:

\[v_{ds}^s = R_{ds}i_{ds}^s + \mathcal{L}_s p_i_{ds}^s + L_m p_i_{dm}^s - \omega_c \left(\mathcal{L}_s i_{qs}^s + L_m i_{qm}^s \right) \]
(5)

\[v_{qs}^s = R_{qs}i_{qs}^s + \mathcal{L}_s p_i_{qs}^s + L_m p_i_{dm}^s + \omega_c \left(\mathcal{L}_s i_{ds}^s + L_m i_{dm}^s \right) \]
(7)

\[v_{dr}^s = R_{dr}i_{dr}^s + \mathcal{L}_r p_i_{dr}^s + L_m p_i_{dm}^s - \left(\omega_c - \omega_r \right) \left(\mathcal{L}_r i_{qr}^s + L_m i_{qm}^s \right) \]
(8)

\[v_{qr}^s = R_{qr}i_{qr}^s + \mathcal{L}_r p_i_{qr}^s + L_m p_i_{qm}^s + \left(\omega_c - \omega_r \right) \left(\mathcal{L}_r i_{dr}^s + L_m i_{dm}^s \right) \]
(9)

The d- and q-axis components of magnetic flux are given by

\[\psi_{ds}^s = \mathcal{L}_s i_{ds}^s + L_m i_{dm}^s \]
(10)

\[\psi_{qs}^s = \mathcal{L}_s i_{qs}^s + L_m i_{qm}^s \]
(11)

\[\psi_{dr}^s = \mathcal{L}_r i_{dr}^s + L_m i_{dm}^s \]
(12)

\[\psi_{qr}^s = \mathcal{L}_r i_{qr}^s + L_m i_{qm}^s \]
(13)

The induced voltage on the magnetizing branch is given as

\[v_{di}^s = L_m p_i_{dm}^s - \omega_c L_m i_{dm}^s \]
(14)

\[v_{qi}^s = L_m p_i_{qm}^s + \omega_c L_m i_{qm}^s \]
(15)

The interaction between stator current and magnetic flux components give electromagnetic torque in d-q coordinate frame as

\[T_{em} = \frac{3}{2} \frac{P}{\mathcal{L}_r + L_m} \left[\psi_{qr}^s \left(i_{ds}^s - i_{dfe}^s \right) - \psi_{dr}^s \left(i_{qs}^s - i_{qfe}^s \right) \right] \]
(16)

The total loss is given by

\[P_{loss} = \frac{3}{2} \left[R_s \left(i_{ds}^s + i_{qs}^s \right) + R_f \left(i_{ds}^s + i_{qs}^s \right) + \frac{1}{R_f} \left(v_{di}^s \cdot v_{qi}^s \right) \right] \]
(17)

Or, \[P_{loss} = P_{js} + P_{jr} + P_{fe} \]
(18)

Where, \(P_{js} \) = stator copper loss; \(P_{jr} \) = rotor copper loss; \(P_{fe} \) = core loss including eddy current and hysteresis loss.
4. Input power measurement

The drive is equipped with DC voltage and current sensors to evaluate P_{in} accurately. The motor is run in closed loop speed control without load such that the contribution of the rotor copper losses is negligible.

The currents, voltages and input powers are recorded when steady-state conditions are reached.

5. Loss Minimization of IM Drive

The improved dynamic performance with minimum loss is the important requirements for IM drive. Therefore, loss minimization schemes using GSS algorithm [26] have been incorporated separately in the outer loop of the control scheme. The vector control not only has the advantage of excellent dynamic performance, but also, enables decoupled control of torque and flux through d-axis (flux-producing) and q-axis (torque-producing) currents in the steady state. This makes the inclusion of the loss minimization algorithm very simple [27]. However, the present energy optimization algorithm using golden section technique for IM drive is based on power loss of the drive system. The drive loss is calculated from the difference between the power input to the inverter and the shaft power output. The reference flux current, i_{ds}^* is generated by the optimization algorithm, while the torque component of current is acquired from the speed control loop. In the transient state, when either the speed command or the load torque is changed, the nominal value of the i_{ds}^* comes into play. The transient speed is easily detected when the speed error signal ($\Delta \omega_r$) reaches the maximum value 0.5 rad/s and the energy
A Golden Section Search Algorithm Based Loss Minimization

optimization algorithm starts settling the i_{ds}^* to the required optimal value. The optimal value of i_{ds}^* generates the optimized required flux without affecting the output power. The optimal value of flux reduces the power loss of the drive system thus fulfilling objective of proposed work. The complete schematic diagram for estimation of speed with loss minimization algorithm is shown in Figure. 3.

6. System stability Analysis
To carry out the stability analysis of any system, the variables must be time-invariant [11]. The IM model in synchronously rotating (ω_e) reference frame has been expressed as

$$
\begin{bmatrix}
i_{ds} \\
i_{qs} \\
\psi_{dr} \\
\psi_{qr}
\end{bmatrix} =
\begin{bmatrix}
-\frac{1}{\sigma_L} & \omega_e & 0 & \frac{3}{\sigma_L} \\
-\omega_e & -\frac{1}{\sigma_L} & 0 & \frac{3}{\sigma_L} \\
p_4 & 0 & -p_5 & \omega_{sl} \\
0 & p_4 & -\omega_{sl} & -p_5
\end{bmatrix}
\begin{bmatrix}
i_{ds} \\
i_{qs} \\
\psi_{dr} \\
\psi_{qr}
\end{bmatrix}
+ \frac{1}{\sigma_L}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
v_{ds} \\
v_{qs}
\end{bmatrix}
$$

(19)

where, $p_1 = \frac{1}{\sigma_L} \left(R_s + \frac{L_m}{\tau_r} \right)$, $p_2 = \frac{1}{\sigma_L} \left(R_s + \frac{L_m}{\tau_r} \right)$, $p_3 = \frac{1}{\sigma_L} \left(\frac{L_m}{\tau_r} \right)$, $p_4 = \frac{L_m}{\tau_r}$ and $p_5 = \frac{1}{\tau_r}$

In the state space domain, (19-20) can be represented as

$$
\dot{x} = Ax + Bu
$$

(21)

$$
y = Cx
$$

(22)

where, A, B, C are obtained from (19)-(20) and $x = \begin{bmatrix} i_{ds} & i_{qs} & \psi_{dr} & \psi_{qr} \end{bmatrix}^T$, $u = \begin{bmatrix} v_{ds} & v_{qs} \end{bmatrix}^T$

Linearizing the state space equation around a stable operating point say x_0, the small signal representation is as

$$
\Delta \dot{x} = \Delta A x + \Delta A x_0
$$

(23)

$$
\Delta y = C \Delta x
$$

(24)

or, $\Delta y = C (sI - A)^{-1} \Delta A x_0$

(25)

$$
x_0 = \begin{bmatrix} i_{ds0} & i_{qs0} & \psi_{dr0} & \psi_{qr0} \end{bmatrix}^T$$

represents the operating point.

For checking the feasibility of the algorithm for rotor speed estimation, ΔA is calculated in terms of $\Delta \omega_r$ as;

$$
\Delta A =
\begin{bmatrix}
0 & 0 & 0 & p_3 \\
0 & 0 & -p_3 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{bmatrix}
\Delta \omega_r
$$

(26)

$$
C = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{bmatrix}
$$

(27)
Using 20 and 26, the expression of Δy in 25 becomes:

$$
\Delta y = \begin{bmatrix} \Delta i_{ds} \\ \Delta i_{qs} \end{bmatrix} =
\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} (sI - A)^{-1}
\begin{bmatrix} 0 & 0 & p3 & i_{ds0} \\ 0 & 0 & -p3 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \Delta \omega_r
$$

(28)

Let, $(sI - A)^{-1} =
\begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \\ c_{41} & c_{42} & c_{43} & c_{44} \end{bmatrix}$

The transfer function of $\frac{\Delta i_{ds}}{\Delta \omega_r}$ and $\frac{\Delta i_{qs}}{\Delta \omega_r}$ obtained from 28 can be represented as

$$
\frac{\Delta i_{ds}}{\Delta \omega_r} = \left(c_{14} - p3c_{12} \right) \psi_{dr0} [sI - A]^{-1}
$$

(30)

$$
\frac{\Delta i_{qs}}{\Delta \omega_r} = \left(c_{24} - p3c_{22} \right) \psi_{dr0} [sI - A]^{-1}
$$

(31)

where, $\text{adj}(sI - A) = [C_{ij}]$ and i, j varies from 1 to 4.

From Figure 3, the following expressions have been derived:

$$
v_{ds}^* = \left(k_p + \frac{k_i}{s} \right) \left(i_{ds} - i_{ds}^* \right)
$$

(32)

$$
v_{qs}^* = \left(k_p + \frac{k_i}{s} \right) \left(\omega - \omega \right) - i_{qs}^*
$$

(33)

where, $\eta = k_p + \frac{k_i}{s}$ = transfer function of the speed PI controller, $r_2 = \left(k_p + \frac{k_i}{s} \right)$ = transfer function of current PI controllers, as seen from Figure 4.

To check feasibility of the algorithm for speed estimation, ΔA is calculated in terms of $\Delta \omega_r$ with an aim of obtaining $\frac{\Delta i_{ds}}{\Delta \omega_r}$ and $\frac{\Delta i_{qs}}{\Delta \omega_r}$. From the small signal error equation, $\frac{\Delta e}{\Delta \omega_r}$ is represented as:

$$
\frac{\Delta e}{\Delta \omega_r} = k_2 \frac{\Delta i_{ds}}{\Delta \omega_r} + k_3 \frac{\Delta i_{qs}}{\Delta \omega_r} + (k_5 - k_4) = G(s)
$$

(34)

where, $k_2 = v_{qs0} - 2\sigma L_s^* v_{qs0} i_{ds0} + 2\sigma L_s^* \psi_{dr0}^2 i_{ds0} + 2^{*} i_{ds0}$; $k_3 = -v_{ds0} - 2\sigma L_s^* v_{qs0} i_{qs0} - 2^{*} i_{ds0}$;

$$
k_4 = -\sigma L_s^* i_{ds0}^2 - \sigma L_s^* i_{ds0}^2 - \frac{L_m^2}{L_r} i_{ds0}^2 - r_i i_{ds0};
$$

$k_5 = -\sigma L_s^* i_{ds0}^2 - \sigma L_s^* i_{qs0}^2 - \frac{L_m^2}{L_r} i_{qs0}^2 - r_i i_{ds0}$;

![Figure 4. Closed loop representation of speed estimator](image)

The closed loop transfer function representation (Figure 4) of the speed estimator is obtained as:
\[
\frac{\dot{\omega}_r}{\omega_r} = G(s) \left(k_p + \frac{k_i}{s} \right) \left(1 + G(s) \left(k_p + \frac{k_i}{s} \right) \right)
\]

(35)

where, \(\left(k_p + \frac{k_i}{s} \right)\) is the transfer function of the PI controller.

Using (35), the stability analysis using linearized machine equations for the whole IM drive system based on GSS algorithm are carried out for both motoring and regenerating modes of operation. The IM drive system based on GSS algorithm is found to be stable in motoring mode (Figure 5(a)), as well as in regenerating mode of operation (Figure 5(b)) as confirmed in the relevant bode plots. It can be observed from the plots that all poles and zeroes are lying in the left hand side of the s-plane. This confirms stability of the IM drive operation based on GSS algorithm in both the modes.

7. Simulation Results

The performance of the proposed GSS algorithm for loss minimization of vector controlled IM drive is verified in Matlab/Simulink for various test cases as follows. The simulation results show the speed, rotor flux, stator current, and IM drive’s loss responses before and after the optimization schemes are initiated for IM drive. The details specification of the 3-phase, 1.5 kW IM drive is given in APPENDIX A.
A. Step change in rotor speed

Figure 6. Simulation results of the IM drive with GSS scheme for step change in rotor speed at 5 Nm load torque: (a) reference, estimated and actual speeds, (b) d- and q-axis rotor flux, (c) d-axis stator current, and (d) total loss of the drive.

The simulation results of GSS based optimization scheme for IM drive is studied in the motoring mode by a step change in the reference speed as shown in Figure. 6. An increasing step change in the speed command is applied at every 10 s and the reference and actual speeds are shown for the whole speed range in Figure. 6(a) for GSS based optimization algorithm. Throughout the operation a constant torque of 5 Nm is maintained. The flux component of the
stator current \(i_{ds} \) is shown in Figure 6(b). After every speed transient period, \(i_{ds} \) is adjusted to the optimal value by GSS algorithm. The flux orientation is also altered as the \(i_{ds} \) changes and is shown in Figure 6(c). The loss of the IM drive system is shown in Figure 6(d). It can be observed that without the efficiency optimization algorithm in the transient period, the drive loss is on the higher side as compared to the duration after optimization algorithm becomes functional.

Figure 7. Simulation results of IM drive with GSS scheme for second quadrant operation at 5 Nm load torque: (a) reference, estimated and actual speeds, (b) d- and q-axis rotor flux, (c) d-axis stator current, and (d) total drive’s loss.
B. Regenerative mode operation: Second quadrant operation

Table 1. Performance Assessment of IM drive operation in motoring and regenerating mode with and without GSS based optimization.

<table>
<thead>
<tr>
<th>Speed (rad/s)</th>
<th>Torque (Nm)</th>
<th>Loss (W), with Conventional optimization</th>
<th>Loss (W), with GSS optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>5</td>
<td>485</td>
<td>460</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>423</td>
<td>403</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>396</td>
<td>383</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>364</td>
<td>355</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>341</td>
<td>331</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>327</td>
<td>311</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>318</td>
<td>298</td>
</tr>
<tr>
<td>0</td>
<td>-5</td>
<td>322</td>
<td>306</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>331</td>
<td>319</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>350</td>
<td>341</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>363</td>
<td>353</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>388</td>
<td>371</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>431</td>
<td>422</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>472</td>
<td>460</td>
</tr>
</tbody>
</table>

The performance of the IM drive system in second quadrant is shown in Figure 7. The estimated speed follows the actual speed satisfactorily (Figure 7(a)) for GSS loss optimization scheme. The optimization algorithm comes into play at 5 s, 15 s, and 25 s. The optimal and non-optimal fluxes are shown in Figure 7(b) for GSS optimization scheme. The change in current during the entire time period is shown in Figure 7(c). The decrement in loss based on GSS optimization is shown in Figure 7(d). It can be observed from the results that GSS based optimization scheme is more efficient in reducing the loss than drive without GSS scheme. A quantitate performance of the IM drive with loss minimization schemes are presented in tabular form for different speed ranges at 5 Nm load torque in Table I. The Table summarizes the results of loss minimization achieved by GSS optimization scheme for IM drive.

8. Experimental Validation

A laboratory prototype is developed to validate the performance of the proposed loss minimization using dSPACE-1104. A representative block diagram of the experimental setup for GSS based loss minimization schemes for IM drive is shown in Figure 3. The code of the proposed estimator for dSPACE-1104 controller is generated with 10 kHz sampling frequency at 4.7 kHz inverter switching rate using MATLAB/Simulink interface. The stator windings are fed through a space-vector pulse width modulated (SVPWM) inverter operating with a switching frequency of 4.7 kHz for the control purpose. The control pulses for the inverter are generated according to the proposed algorithm and field orientation. Two current sensors are employed to sense the line currents for the execution of the proposed control scheme in dSPACE-1104 controller board which has built-in analog-to-digital converter (ADC), digital-to-analog converter (DAC) and dedicated Input/Output (I/O) ports. A few results of drive’s operation are presented in the following subsections.

A. Step Change of Rotor Speed

The experimental results corresponding to the simulation results of the IM drive system is shown in Figure 8 for GSS based loss minimization scheme. The step change in the reference
speed is considered as shown in Figure. 8(a). The d- axis and q- axis rotor flux is depicted in Figure. 8(b). Figure. 8(c) shows the flux components of the stator current \(i_{ds} \) for GSS based algorithm. After every speed transient period, \(i_{ds} \) is adjusted to the optimal value by GSS algorithm. The loss of the IM drive shown in Figure. 8(d) for GSS based scheme. It can be observed that for GSS based loss minimization scheme, the drive loss is minimized in the transient period as compared to the period without GSS based optimization scheme. Throughout the operation a constant load torque of 5 Nm is maintained.

![Figure 8(a)](image1)

![Figure 8(b)](image2)

![Figure 8(c)](image3)

![Figure 8(d)](image4)

Figure 8. Experimental results of IM drive with GSS scheme for step change in rotor speed at 5 Nm load torque: (a) reference, estimated and actual speeds, (b) d- and q-axis rotor flux, (c) d-axis stator current, and (d) total loss of the drive

B. Regenerative mode operation: Second quadrant operation

The experimental results for GSS based loss minimization scheme in both the motoring and regenerating modes of operation is presented in Figure. 9. In the motoring (1st quadrant) and regenerating (2nd quadrant) modes, the load torque is kept constant at 5 Nm while the reference
speed is reversed alternatively at +40 rad/s and -40 rad/s after every 10 s (Figure 9(a)). The estimated speed is found to track the reference speed satisfactorily. The energy optimization algorithm is initiated at 5 s, 15 s, and 25 s respectively, thus, reducing the d-axis rotor flux to an optimized value (Figure 9(b)). Figure 9(c) signifies the optimized d-axis stator current waveform for the aforesaid scheme. The total losses of the IM drive before and after the optimization algorithm is functional is shown in Figure 9(d). It can be observed from the results that the performance of GSS based loss minimization scheme for IM drive surpasses performance of IM drive without GSS based algorithm.

Figure 9. Experimental results of IM drive with GSS scheme for second quadrant operation at 5 Nm load torque: (a) reference, estimated and actual speeds, (b) d- and q-axis rotor flux, (c) d-axis stator current, and (d) total drive’s loss.

9. Conclusion

This paper presents a loss minimization scheme for IM drive known as GSS (GSS) method. The loss-minimization algorithm is developed considering the drive’s loss for the scheme. The performance of the IM drive system based on the GSS algorithm has been verified in both
simulation and experiment at different operating conditions. Moreover, the stability analysis of the IM drive system in the motoring and regenerating modes of operation confirms a stable drive operation for the scheme. The GSS based scheme for IM drive has been implemented in real time for a laboratory 1.5 kW motor using dSPACE controller board DS1104. The efficiency optimization algorithm generates the optimal value of i_{ds}^* minimizing the core loss of the drive system as the flux level is highly optimized. It is established from the results that the performance of the IM drive with the GSS based optimization algorithm remarkably reduces the loss of drive system as compared to results obtained without GSS based optimization scheme.

APPENDIX A

A.1. MACHINE RATING AND PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated shaft power (P_r)</td>
<td>1.5 kW</td>
</tr>
<tr>
<td>Line-to-line voltage (V_{lin})</td>
<td>415 V, 50 Hz</td>
</tr>
<tr>
<td>Poles (P)</td>
<td>4</td>
</tr>
<tr>
<td>Magnetizing inductance (L_m)</td>
<td>0.7 H</td>
</tr>
<tr>
<td>Stator and rotor leakage inductance ($L_s = L_r$)</td>
<td>0.0352 H</td>
</tr>
<tr>
<td>Stator resistance (R_s)</td>
<td>5.205 Ω</td>
</tr>
<tr>
<td>Rotor resistance (R_r)</td>
<td>4.075 Ω</td>
</tr>
</tbody>
</table>

10. References

Keerti Rai received B.Tech in Electrical and Electronics from LNCT Bhopal in the year 2005, M.Tech in Energy from NIT Bhopal in the year 2008. She has 4 years of teaching experience. Currently pursuing PhD at Electrical and Electronics Department, NIT Jamshedpur. Her research area includes electrical motor drive, energy saving in electrical motors.

In 1977 he joined the Departement of Electrical Engineering, RIT Jamshedpur as a Lecturer. Having served the Departement/Institute for 39 years. He got retired under superannuation from there in April, 2016. Dr. Seksena is a Fellow Member of Institution of Engineers (India), Kolkata, FIE (I) 106487/4 EL & Life Member (LM 453) of Instrument Society of India, IISc. Campus, Bangalore. His research interests are Digital Instrumentation, Solid State Drives & Control, Power System, and Non-conventional Energy Sources.

Amarnath Thakur received the B Sc (Engg.) degree in Electrical Engineering from MIT, Muzaffarpur, the M Tech degree from IIT(BHU), Varanasi and the Ph D degree from Department of Electrical Engineering, IIT Kharagpur in 1979, 1982 and 1997 respectively. He is currently a Professor in the Department of Electrical and Electronics Engineering, National Institute of Technology Jamshedpur. His area of interest include power electronics and renewable energy system. He is life member of the Indian Society for Technical Education New Delhi and Institution of Engineers, India.