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Abstract: In this paper, three paradigms are used to deal with a robot manipulator 

control problem. These paradigms are feedback linearization method, approximating 

control by Taylor truncation, and sliding mode approach. Robotic manipulator is highly 

nonlinear, highly time-varying, and highly coupled. In robotic manipulator there are 

many uncertainties such as dynamic parameters (eg., inertia and payload conditions), 

dynamical effects (e.g., complex nonlinear frictions), and unmodeled dynamics. The 

classical linear controllers have many difficulties in treating these behaviors. To 

overcome this problem, sliding mode control (SMC) has been widely used as one of the 

precise and robust algorithms. Application of traditional SMC in nonlinear system uses 

exact feedback linearization. Geometric differential theory is used to develop exact 

linearization transformation of nonlinear dynamical system, by using nonlinear 

cancellation and state variable transformation. Hence, the controller can be synthesized 

by using the standard sliding mode for linear system. The main weak point of the exact 

linearization is that its implementation is difficult. This study presents a synthesis SMC 

based on approximating state feedback for robotic manipulator control system. This 

approximating state feedback is derived from exact feedback linearization. Based on 

approximating state feedback, sliding mode controller is derived. The closed loop 

stability is evaluated by using the Lyapunov like theory. 

 

Keywords: Robotic manipulator, exact feedback linearization, approximating state 

feedback, sliding mode, Lyapunov like theory 

 

I. Introduction 

Robots are ideal candidates for material handling operations, manufacturing, and measuring 

devices because of their capacity to pick up, move, and release an object, to manipulate both 

objects and tools and their capacity to explore the three dimensional space. 

Nowadays, robotic manipulator is extensively used in the industrial field. The desire of a 

high-speed or a high-precision performance for this kind of mechanical systems has led to 

research into improved control systems. These high performance control systems need, in 

general, the dynamical model of the robotic manipulator in order to generate the control input 

(Yurkovich, 1992). 

Robotic manipulator is highly nonlinear, highly time-varying, and highly coupled. 

Moreover, there always exists uncertainty in the system model such as external disturbances, 

parameter uncertainty, sensor errors and so on, which cause unstable performance in the robotic 

system (Sadati et al, 2005). Almost all kinds of robust control schemes, including the classical 

sliding mode control (SMC) (Yong, 1978), have been proposed in the field of robotic control 

during the past decades. SMC design provides a systematic approach to the problem of 

maintaining stability in the face of modeling imprecision and uncertainty. Application of 

traditional SMC in nonlinear system uses exact feedback linearization. The main weak point of 

the exact linearization is that its implementation is difficult. To overcome this difficulty, this 

paper presents a synthesis SMC based on approximating state feedback for robotic manipulator 

control system. This approximating state feedback is derived from exact feedback linearization. 

The closed loop stability is evaluated by using the Lyapunov theory.  
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During the past decade, several design methods, e.g., robust control (Torres et al, 2007), 

discrete-time repetitive optimal control (Fateh and Baluchzadeh, 2016) adaptive control 

(Yazarel and Cheah, 2002; Wang, 2017), backstepping control (Lotfazar et al, 2003; Nikdel et 

al, 2017), neural network (He et al, 2017; Patino et al, 2002), and fuzzy logic (Kim et al, 2001; 

Nazemizadeh et al, 2014) for robotic manipulator control have been proposed. In addition, a 

sliding mode control based on feedback linearization method (Moldoveanu, 2014; Soltanpour 

and Fateh, 2009) was proposed to control robotic manipulator. A robust control approach is 

developed to control robot in the task space using sliding mode by support of feedback 

linearization control and backstepping method. 

Feedback linearization is a control design approach for nonlinear systems which attracted 

lots of research in recent years (Fattah, 2000; Karadogan and Williams II, 2013; Mokhtari et al, 

2006; Spong and Groeneveld, 1997). The central idea is to algebraically transform nonlinear 

systems dynamics into (fully or partially) linear ones, so that linear control techniques can be 

applied. In the standard approach to exact feedback linearization, one uses coordinate 

transformation and static state feedback such that the closed-loop system, in the defined region, 

takes a linear canonical form. After the system’s linearization form is obtained, the linear 

control design scheme is employed to achieve stabilization or tracking (Isidori, 1995; Slotine 

and Li, 1991). 

In the above exact feedback linearization, the controller characteristics have nonlinear 

functions such as multiplications of the state variables, polynomial functions, trigonometric 

functions, and so on, which the implementation of the controllers by using electronic devices 

have many difficulties (Gray and Meyer, 1977; Mahayana, 1991; Nurbambang and Mahayana, 

1990; Rangan et al, 1992). On the other hand, many researchers have proven that the 

performance of the controllers still maintain good response although the approach of the exact 

feedback linearization have been used (Chong et al, 1991; Koo et al, 2014; Ogawa et al, 1991). 

In (Mahayana, 1998; Mahayana, 2011) has been developed a synthesis of nonlinear control 

system to find a control methodology that makes the exact linearization controller more 

realizable, but without any significant performance degradation. Instead of the exact controller, 

the proposed controller was a general form of controller candidates which replace the function 

of the exact controller. The closed loop stability of the nonlinear system under the controller 

was evaluated by using the Lyapunov stability theory. The condition under which the origin of 

the closed loop system being asymptotically stable was derived by characteristic value shift 

theorem. 

In the previous research (Mahayana, 2011) the gravity was ignored, nevertheless the 

existence of gravity may degrade the control performance. By using approximating state 

feedback, zero steady state error is not guaranteed. To improve the previous research we 

synthesize the sliding mode control based on approximating state feedback for robotic control 

system on two steps. The first is to synthesize the approximating state feedback based on exact 

feedback linearization. The second is to derive sliding mode control to cope the uncertainty. 

Simulation results prove the validity of accurate tracking capability and the robust performance. 

 

II. Dynamics of Robotic Manipulator 

For simplicity, the robotic manipulator to be controlled just has two joints. The structure of 

the two-joints manipulator is shown in Figure 1 (Sun and Wang, 2004). In Figure 1, 1m  and 

2m  are masses of arm1 and arm2 respectively; 1l  and 2l  are lengths of arm1 and arm2; 1t  

and 2t  are torque on arm1 and arm2; 1θ  and 2θ  are positions of arm1 and arm2. The 

dynamics model of two-link robot can be formulated as 

TqGqqqBqqM  )(),()(    (1) 
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where  T
θθ 21q  is the joint position vector; nxn)(qM  denotes the moment of 

inertia; qqqB ),(  are the Coriolis and centripetal forces; )(qG  includes the gravitational 

forces;  T
tt 21T   is the applied torque vector. 

Let ,cos ii θc    ,cos jiij θθc   then GBM ,,  in (1) can be described as 
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Figure 1. Structure of Two-Joints Robotic Manipulator 

 

The inertial matrix )(qM  is symmetric and positive definite. It is also bounded as a function 

of q : IqMI 21 μμ  )( . ),(2)( qqBqM    is skew symmetric matrix, that is, 

  0 xqqBqMx ),(2)( T , where 
1xnx  is a nonzero vector. 

Define Tu   and state variable     ,22114321

TT
θθθθxxxx x  the equations 

of motion for the robotic manipulator can be put in the form of following nonlinear state space: 

 

uxgxfx )()(    (3) 
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where )(xf  is a nonlinear continuous function whose upper bound is known as ,)( maxfxf   

)(xg  is a gain function with lower bound ,ming  ).(min xgg 0  

 

3. Controller Synthesis 

A. Matrix Norm and Spectral Radius 

Definition 1. (Goldberg, 1992; Lancaster and Tismenetsky, 1961) If ,nxn
CA  then spectral 

norm of A  will be defined as 

2

2sup
ns w

Aw

Cw
A




def

   

  (4) 

Definition 2. (Goldberg, 1992; Lancaster and Tismenetsky, 1961) Spectral radius of a square 

matrix ,nxn
CA  ),(Aρ  is the maximum among the absolute values of the characteristic 

values of the matrix A . 

To compute spectral norm value of a square matrix, we depart from (Lancaster and 

Tismenetsky, 1961) 

  ,)( 2
1

s

*
AAA ρ   (5) 

    

where subscript *  denotes conjugate transpose of a matrix. 

 

B. Lyapunov Theory and Linearization 

Consider nonlinear system of the form 

),(xfx    (6) 

     

with ,)( 00 f  or in other words the origin of system is the equilibrium point, and f  is a 

continuous vector field and at least once differentiable with respect to ,x  then the system can 

be approximated by using a linear time invariant system as follows, 

xx Ψ   (7) 

     

0

Ψ





xx

fdef

  (8) 

     

where nxnΨ  is a constant matrix. 

 

Theorem 1. (Khalil, 1992; La Salle and Lefschetz, 1961) If the origin ( 0x ) of the 

linearization result system (7) is asymptotically stable, then the origin of the original system (6) 

will be asymptotically stable. 

 

C. The method of shifting characteristic values 

In this sub-section will be derived the sufficient condition for controller to make the system 

be asymptotically stable, if the closed loop system under exact controller has an asymptotically 

stable origin. Let the controller candidate can be expressed as 

),(xuu a

def

a    (9) 

     

and )(xua  at least once differentiable with respect to x  and ).()( 00 ua u  

The error between exact controller and controller candidate is 
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)()()( xuxuxe  a  (10) 

   

Assume a notation 

BKAAc   (11) 

     

with 
cA  is closed loop system matrix with exact controller, and also be defined respectively, 

several variables as follows: 
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with P  is transformation matrix which transforms cA  to its diagonal canonical form; 

 nλλλdiag ,,, 11
1 

PPAc  (15)  

with nλλλ ,,, 11   are characteristic values of closed loop matrix with exact controller cA , 

the shortest distance to imaginary axis is noted by cλ  (by assumption that characteristic values 

lie in the strict left half of the complex plane). 

Since the linear system from exact feedback linearization in the Brunovsky canonical form, 

then the closed loop system can be made such that all its characteristic values are different. This 

can be done, e.g., by using pole placement method (Chen, 1970). The assumption of all 

different characteristic values of cA  is necessary to make the transformation of matrix cA  to 

diagonal canonical form can be done (Boothby, 1975; Lancaster and Tismenetsky, 1961). 

 

Theorem 2. If  

0)()(  cc AυκλRe  (16) 

     

then the origin of the system (3) under control input )(xua  will be asymptotically stable. 

 

Proof. Theorem 2 will be proved in many stages: construction under exact controller, existence 

of controller candidate, transformation of system under controller candidate to new state space 

coordinate, Lyapunov stability analysis, and analysis of shifting characteristic value. 

 

D. Construction under exact controller 

Equation (1) can be linearized by choosing T appropriately. Taking T of the form (Slotine 

and Li, 1991) 

)(),()( qGqqqBvqMT    (17)  

where 12xv  is the new control input, leads to 

vq   (18) 

     

By choosing state variable     ,22114321

TT
θθθθxxxx x  it can be seen that 

the robotic manipulator dynamics can be expressed in the Brunovsky canonical form as  
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Define   ;2,1i,ii 
T

θθ 
iz  equation (19) can be put in the form of following three 

linear subsystems: 
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Letting 

iiniiini ςξςv 
,

2
, 2     (21) 

  

where  i,n  denotes thi   natural frequency, iξ  denotes thi   damping ratio, and 

.2,1i   

To minimize the ITAE criterion for the step input, one can choose all poles with a damping 

ratio of 707.0i ξ  and also can be chosen thi   natural frequency as follows  

16
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 The feedback gain K can be computed as follows: 
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E. Existence of controller candidate 

Since   n TT :  with an open set   on n  is a diffeomorphism, then T  is 

smooth. Furthermore )(xu  will be smooth. Based on the smoothness of )(xu , we can choose 

a new control input )(xua  that is continuous and at least once differentiable with respect to x  

with )()( 00 uu a , and it satisfies 

 




)()( xuxua  (24) 

      

with   is a positive constant, at a range n  where   is a bounded closed set. 

 

F. System transformation under controller candidate 

Nonlinear dynamical system with control input )(xua  is 

)()()( xuxgxfx a  (25)  

   

Equation (25) can be arranged as 

)}()({)()( xexuxgxfx   (26) 
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After some complex calculations, Equation (26) can be written in new state variable, z , as 

follows 
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The dynamic of system under controller candidate in new state space coordinate can be seen 

as a nonlinear system that consists of a linear part and a nonlinear perturbation. 

Since )(xua  has been chosen such that ,)()( 000  uua  then ,)( 00 e  furthermore at 
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This is shown that the equilibrium point of the system under controller candidate is same 

with the equilibrium point of the system under the exact controller. 

 

G. Lyapunov Stability Analysis 

Nonlinear system in Equation (27) can be expressed as 

)(zfz c  (29) 

     

with 
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Since )(zfc  is smooth in a neighborhood of the origin then there exists 
z

zf



 )(c  in a 

neighborhood of the origin. The origin is an equilibrium point, since based on (28) 
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Linearization of (29) in a neighborhood of the origin yields 
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Eq. (32) can be expressed as 

 zDAz  c
  (33) 

    

with 
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According to the Lyapunov stability theory, if the origin of system (33) is asymptotically 

stable then the origin of system (29) that is a closed loop system under controller candidate 

)(xua , will be asymptotically stable. This can be achieved if all characteristic values of matrix 

 DA c  lie in the strict left half of the complex plane. 

 

H. Analysis of shifting characteristic values 

The linear system (33) can be described by the sum of a nominal system matrix, cA  and a 

perturbation matrix, D . Assume n ,,, 21   are characteristic values of  DA c , by 

definition of characteristic value (Goldberg, 1992; Lancaster and Tismenetsky, 1961), it can be 

written as follows 
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I. Construction of controller candidate 

The parameter values used for the robotic manipulator are ,41 kgm   ,22 kgm   ,11 ml   

,5.02 ml     ./8.9 kgNg   
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We propose the controller candidate as 
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The error between exact controller and approximation controller can be expressed as 
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By differentiating )(xε  with respect to ,x  and putting the value ,0x  it can be found 
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and furthermore this will imply 
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Since 0,κ  then for this case, Equation (16) is always true, so it can be concluded that 

the origin of closed loop system (1) under the controller 

xxu
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is asymptotically stable. 
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J. Sliding mode control 

The main drawback of approximating state feedback controller is the existence of a steady 

state error, due to the existence of uncertainty. The limitations mentioned above have inspired 

the idea to derive sliding mode controller based on approximating state feedback. 

The first stage in designing a sliding mode controller scheme for robotic manipulator, the 

goal of the control is to drive the joint position q  to the desired position dq . Let us define 

dqqe   as a tracking error vector. We firstly define the sliding variable as follows: 



t

d

0

21 τeλeλes   (51)  

where  21, iii λλdiagλ , in which 1iλ  and 2iλ  are chosen to minimize ITAE criterion based 

on exact feedback linearization. 

Based on exact feedback linearization, and to apply feedback gain K  in Eq. (23) as 

follows 

ii1ii2i eKeKT    (52) 

    

will imply  

0i1i2i  eKeKe ii   (53) 

  

Based on approximating feedback linearization, and to apply L  in Eq. (47) as follows 

2242231221212

2142131121111

θLeLθLθLT

θLθLθLeLT








 (54) 

will imply  

ii1i2i  eKeKe ii     

  (55) 

where i  is the error between application of exact feedback linearization and approximating 

feedback linearization. 

The condition for the existence of the sliding mode relates to the stability of the 

representative point (RP) around the sliding surface. This means, under any circumstances, the 

RP should stick to the sliding surface. In case of ideal sliding mode motion the sliding surface 

and its phase velocities should be identically zero i.e. 

0s  (56) 

     

0s  (57) 

     

If system states remain on the sliding surfaces chosen, each tracking error ie  will governed 

after such finite amount of time by the second-order differential equation 0i2i1i  eλeλe ii
 . 

Thus each tracking error 
ie  will converge asymptotically to 0  as t  because 1iλ  and 2iλ  

are positive constants (Slotine and Li, 1991). But in actual practice it is very difficult to tune to 

this due to various types of uncertainties, inertia of the physical system, and unrealizability of 

infinitely fast switching. So for all practical purposes the goal is to find control torque T , such 

that the system state trajectories are driven to the sliding surfaces. 

The second stage of the design procedure involves the selection of the control which will 

ensure that the chosen sliding mode is attained. For this reason, the problem of determining a 

control structure and associated gains, which ensure the reaching or hitting of the sliding mode, 

is called the reachability problem. Let the control torque T  can be chosen as follows 
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will imply 

ii2ii1

ii2i1i

)( sCssignC

eKeKe ii



 
  (59) 

where i1C  and i2C  are positive constants. It can be proved that by choosing i1C  such that 

boundiC i1  (60) 

       

where 
boundi  is the boundary of i , the overall system is asymptotically stable. 

Proof: Consider V  in equation (61) as the Lyapunov like function candidate 

2
i

2

1
sV   (61) 

    

For 0i s , 0V . Now taking the derivative of V  with respect to is , one can obtain 
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Using (60), when 0i s , 

0

)(

ii2
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and when 0i s  
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so that 

  0)( ii2ii1ii  sCssignCs   

The Lyapunov like function candidate in (61) is a positive definite and decrescent function, 

which implies that is  is driven to zero in finite time. So the overall system is asymptotically 

stable. 

The discontinuous control term in (58) causes high chattering effect which is undesirable in 

any dynamic system due to its infinite switching frequency. To remedy the control discontinuity 

in the boundary layer, the signum function )(sign is  in (58) is replaced by a saturation 

function of the form (Slotine and Li, 1991): 
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sssign

ssat  (63) 

where i   is the boundary layer thickness. 
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4. Simulation Result And Discussion 

In the simulation, the nominal parameters of manipulator are ,41 kgm   ,22 kgm   

,m1l1   ,5.02 ml     .kg/N8.9g   In this example, the manipulator is expected to take 

a load from position one ( 5.01   rad and 12   rad) to position two ( 11   rad and 22   

rad). In the first stage, the manipulator moves from the initial position to the position 1 along a 

predefined trajectory during 2 s. It stays there for 1 s to take the load ( kgmload 1 ) and start to 

move from position one to position two at 3t  s. During the second stage, a disturbance 

( Ntt 100011  ) is added to link 1 at 8.3t  s and disappears at 4t  s. From the above 

description, there are totally three dynamic changes in the whole process because of the added 

load, disturbance, and coming back to be normal when the disturbance disappears. 

The simulation results are shown in Figure 2 – Figure 6. As is seen in Figure 2 and Figure 3, 

the joint angles track the desired trajectories and the proposed controller drive the robotic 

manipulator to its desired positions. 

  

 
Figure 2. Tracking of joint 1 with the proposed controller. 

 

 

 
Figure 3. Tracking of joint 2 with the proposed controller. 
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Figure 4. Control torque of joint 1 with the proposed controller. 

 

 
Figure 5. Control torque of joint 2 with the proposed controller. 

 

 
Figure 6. Tracking error of joint angles with the proposed controller. 

 

5. Conclusions 

The proposed method has five stages. First, the controller is synthesized by using exact 

feedback linearization. Second, the controller is replaced by the controller candidate which is 

synthesized by approximating an exact feedback controller. Third, stability of the controller 

candidate is verified by using Lyapunov theory. Fourth, the sliding mode is implemented. Fifth, 

the controller candidate is implemented by using digital simulation. 

The proposed controller can be implemented by using digital controller if the sampling time 

is small enough. By choosing a reasonable value for discontinuous control term, the control 

input will not exceed the saturation level. Figure 4 and 5 show that the control input does not 

exceed the limitation of input (1000 Nm). 
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The controller benefits from the well-established theory of the sliding mode control and the 

simple implementation of approximating state feedback controller. The proposed controller can 

drive the robotic manipulator to its desired positions. Simulation results situation are provided 

to show the effectiveness of the proposed scheme. 
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