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Abstract: Small signal stability is one of the factor to assesst the reliability of a power 

system. Small signal stability is related to the ability of a power system to maintain 

synchronization after being exposed by small disturbance. In Indonesia, the reliability of 

power system is one of the important aspect that has to be achieved. However, very scant 

attention has been paid on studied small signal stability performance on Indonesia 

electricity. Hence, this paper studied the small signal stability analysis and its 

enhancement. 150 kV Sulselrabar interconnected power system is used as test system. To 

enhance the performance of the system designing coordinated controller of power system 

stabilizer (PSS) and redox flow batteries (RFB) using cuckoo search algorithm (CSA) is 

conducted. Eigenvalue, damping ratio, participation factor analysis, and time domain 

simulation is performed to assess the small signal stability performance and the 

successfulness of the CSA to optimize the PSS and RFB parameter. From the cases 

studies, it is found that 150 kV Sulselrabar has 12 local mode and 4 inter-area mode. 

Furthermore, the coordinated controller between PSS and RFB based on CSA could 

enhance the small signal stability performance of 150 kV Sulselrabar interconnected 

system indicated by higher damping, smallest overshoot and fastest settling time. 

 

Keywords: Modal analysis, eigenvalue, damping ratio, participation factor, PSS, RFB, 
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1. Introduction 

Electrical energy has becoming a role vital in the daily activities of modern society. Every 

years there are a significant increase of electrical energy demand that drive the power provider 

to provide sufficient and qualified electrical energy. The increasing load demand every years has 

led to several problem in the stability of power system. One particular stability that can effected 

by increasing load demand is small signal stability. 

Small signal stability or low frequency oscillation is the ability of power system to maintain 

stable condition after small perturbation occurs. This instability has frequency oscillation ranging 

from 0.1 to 2 Hz [1, 2]. If this instability is not handled properly, the oscillation may grow larger 

and lead to loss of synchronization of the interconnected system [3]. Generally, this instability 

can be handle by installing damper windings on the rotor of the generator. However, over the 

time the performance can be decreased. Hence, additional controller such as power system 

stabilizer (PSS) can be solution to handle small signal stability problems [4]. However, PSS 

alone is not enough to stabilize the low frequency oscillation when load demand increase 

significantly. Hence, additional device such as redox flow batteries (RFB) can be used as 

additional controller to enhance the system performance. 
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150 kV Sulselrabar interconnected power system is one of the largest interconnected power 

system in Sulewesi Island on Indonesia. Small signal stability problem is potentially emerges on 

150 kV Sulselrabar interconnected power systems. However, very scant attention has been paid 

on studying small signal stability performance of 150 kV Sulselrabar. Hence, it is necessary to 

deeply investigate the small signal stability performance and also enhance the system 

performance. The biggest challenge in here is how to design optimal coordination of RFB and 

PSS in large interconnected system such as 150 kV Sulselrabar. Generally, designing PSS and 

RFB are based on traditional mathematical approach with high complexity. This the complexity 

of designing PSS and RFB becoming even worse when those devices installed in large system. 

Hence, it is essential to utilize intelligence method such as metaheuristic algorithm for designing 

PSS and RFB. 

In the last decade, metaheuristic algorithm has shown a good performance for solving 

complex engineering problems. There are many type of metaheuristic algorithm that has been 

used on complex engineering problems such as genetic algorithm, particle swarm optimization, 

artificial immune system, differential evolution algorithm and bacteria foraging algorithm [5-

10]. In recent years, there is new type of metaheuristic algorithm that has shown a good 

performance for solving complex engineering problems, this algorithm is called cuckoo search 

algorithm (CSA). This algorithm has shown a better performance than particle swarm 

optimization and genetic algorithm [11]. Hence the main contribution of this paper are: 

• Investigate, the small signal stability performance on 150 kV Sulselrabar. 

• Finding the electromechanical mode (EM) including the associated generator that contribute 

to the EM. 

• Mitigation of low frequency oscillation using coordinate control between PSS and RFB based 

on CSA. 

The rest of the paper is organized as follow: Section II provides modeling of synchronous 

generator, exciter, governor, PSS and fundamental theory of small signal stability. Section III 

briefly explain CSA and designing coordinate control of PSS and RFB using CSA. Modal 

analysis and time domain simulation are presented in section IV. Section V highlights the 

contribution, conclusions and future directions of the research. 

 

2. Fundamental Theory 

A. Generator, exciter and governor modeling 

 In small signal stability study, the most important thing is capturing the dynamic behavior of 

the system. Hence, transforming the non-linear model of synchronous generator to linear model 

is essential. The linear model of synchronous generator is given by (1), this mathematical 

representation can be derived through DQ transformation. The detailed procedure for 

transforming non-linear synchronous generator to linear model by using DQ transformation can 

be found in [12]. 
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 (1) 

 

 For small signal stability study, the excitation system can be simply modeled as first order 

differential equation consisting of gain and time constant as shown in Figure 1. Furthermore, the 

governor on power system can also be modeled as first order time delay with gain as illustrated 

in Figure 2 [13]. 
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Figure 1. Exciter Block Diagram. 
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Figure 2. Governor Modelling. 

 

B. Power System Stabilizer Modeling 

 Power system stabilizer (PSS) is additional controller in power system to mitigate oscillatory 

condition on power system. PSS is give additional signal to the excitation system to produce 

damping signals via electrical torque components. The input of PSS is rotor speed deviation 

while the output of PSS is additional control signal to the excitation system [14-17]. 

PSS consist of gain constant, washout process, lead lag process and saturation as shown in 

Figure. 3. The washout process modeled as first order time delay while the lead lag process 

comprises of second order differential equation [14-17]. 
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Figure 3. Block Diagram PSS. 

 

C. Redox flow batteries modeling 

 Redox flow batteries (RFB) is one of the energy storage type that has becoming popular due 

to higher level capacity and quick response for providing active power to the system compared 

t the conventional battery. RFB is consisting of sulfuric acid with vanadium ion which are 

worked as negative and positive electrolytes ion. In this paper the purpose of RFB is providing 

active power to the grid by detecting rotor speed deviation of synchronous generator [18-20]. 

For small signal stability study, capturing dynamic model of RFB is crucial. The dynamic model 

of RFB can be presented as second-order differential equations as given in (2), while Figure. 

illustrates the schematic diagram of RFB. Where Kri and Tri are gain constant and time delay of 

the converter. ω and ΔPrfb are rotor speed of generator and active power from the RFB, while 

Krfb and Trfb corresponded to the gain and time delay process of RFB [18-20]. 
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Figure 4. Schematic diagram of RFB. 

 

D. Power system modeling 

 The dynamic characteristic of power system for low frequency oscillation study can be 

captured through differential and algebraic equation (DAE) as given in (3) and (4). In this study, 

multi-machine power system is considered to investigate the dynamic behaviors of local and 

inter-area modes [21, 22]. 

  ,  , x f x y u   (3) 

  0 , g x y   (4) 

 Where x and y corresponded to the state and algebraic variables respectively, while l and p 

related to the uncontrollable and controllable parameters. The load flow and other network 

parameter are included in algebraic equations, while machines and all others controller 

parameters are included on differential equations [21, 22].  

 

E. Small signal stability 

 Small signal stability or low frequency oscillation is related to the ability of power system to 

remains on stable condition after being exposed by small perturbation. Small signal stability can 

be classified into two categorize namely local oscillation and global oscillation. Local oscillation 

is associated with the generator unit within a power plant with the rest of the system in that area 

with frequency ranging around 0.7-2 Hz. Global oscillation (inter-area mode) is related with 

generator unit in one area against generating units in another area, with typical frequency 

oscillation ranging from 0.1-0.7 Hz. Small signal stability analysis can be easily investigate 

through state space representation as given in (5) and (6) by linearizing equation (3) and (4) [23-

25]. 

 x A x B u       (5) 

 y C x D u       (6) 

 Where Δx is a vector of state variables. Δy represents a vector of algebraic variables. Δu 

corresponded to the input vector. A and B are plant matrix and control or input matrix, 

respectively. While output matrix and feedforward matrix are denoted by C and D, respectively. 

Eigenvalue that can be calculated using (7), can be used to investigate the stability of the system 

[23-25]. 

  det 0sI A    (7) 
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 Where I is the identity matrix, and 𝜆 is eigenvalues of matrix Asys. Moreover, complex 

eigenvalue carried information about frequency oscillation (f) and damping ratio (𝜉) which can 

be described as given in (8), (9), and (10) [23-25]. 
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 To investigate the contribution of particular state variables in a mode, participation factor 

analysis can be used. Participation factor can be determined using (11) [26, 27]. 

 
ij ij ij

P    (11) 

 Where 𝜙 and 𝜓 represent the right and left eigenvector, respectively. The product of right 

and left eigenvector provides dimensionless net participation of the state variables in a specific 

modes [26, 27].  

 

3. Design PSS and RFB based on CSA 

A. Cuckoo search algorithm 

 Cuckoo Search is a metaheuristic method inspired by the behavior / habits of daily living 

cuckoo in giving a birth. This method was developed by Xin-She Yang and Deb in 2009 and can 

be used as an optimization method to determine the global optimum value both minimum and 

maximum. There are four assumption in utilizing CSA as optimization method [28, 29]: 

• Each cuckoo puts one egg at one time in a random nest. 

• Each egg (including a nesting bird’s egg) in the nest represent the solution, while the cuckoo 

bird egg represents a new solution. The goal is to use a new, better solution to replace a poor 

solution. If in one nest there is more than one cuckoo bird egg, this algorithm will be too 

broad and more difficult. Hence, each cuckoo parent just entrust one egg to the owner of the 

nest. 

• The best nest with the best egg quality (solution) will survive until the next generation and 

became the set of solution. 

• The number of nest targets has been fixed, and the owner of the nest can detect the foreign 

egg with the possibility 0 to 1. In this case, the owner of the nest may throw away the foreign 

egg or leave the nest and create a new nest. 

 

 Cuckoo has a unique behavior called levy flight that is not possessed by other bird. Levy 

flight can be presented as given in (12) with μ > 0 is a minimum steps and  is scale parameters 

[28, 29]. 
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B. Tuning PSS and RFB procedure 

 Figure 5 shows the research flowchart, in this paper, the CSA is used as method for designing 

optimal coordination of PSS and RFB. Comprehensive damping index (CDI) is used as CSA 

objective function with minimum and maximum value of PSS and RFB parameter as the 

constraint. This objective function can be presented as given in (13), while the maximum and 

minimum value of PSS and RFB parameter is given on Table 1 [30]. 
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Table 1. Constraint of PSS and RFB parameters 

No Parameter Lower Limit Upper Limit 

1 Krfb 10 100 

2 Kpss 10 50 

3 T1 0 0.05 

4 T2 0 0.05 

5 T3 0 1 

6 T4 0 2 

7 Tw 10 
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Figure 5. Research flowchart. 
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4. Results and Simulations 

 Two case studies is reported in this paper in an attempt to investigate the small signal stability 

performance and its enhancement using coordinated control of PSS and RFB. The case studies 

are carried using MATLAB/SIMULINK environment. 150 kV Sulselrabar interconnected power 

system is considered as a test system, the detailed parameter of 150 kV Sulselrabar can be found 

in [31]. The system consists of sixteen generator bus and 21 load bus as shown in Figure. 6, each 

generator modeled into ninth order model with exciter and governor. Hence, the total state 

variables in this system is one hundred and forty four state variables. 
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Figure 6. The one line diagram of 150 kV Sulselrabar 

 

A. Case study 1 

  

Table 2. Electromechanical mode of 150 kV Sulselrabar. 
Mode Eigenvalue Damping (%) Frequency (Hz) Participation Factor 

Inter-area 1 -0.3298±4.0807i 8.06 0.6495 G2G4G5G10G11G12G13G14G15 

Inter-area 2 -0.4462±4.6039i 9.65 0.7327 G9G10G11G14G15 

Inter-area 3 -0.5050±4.5408i 11.05 0.7227 G5G7G14G15 

Inter-area 4 -0.5121±4.5346i 11.22 0.7217 G5G6G14G15 

Local 1 -1.0027±9.4221i 10.58 1.4996 G1G3 

Local 2 -1.0063±8.4356i 11.85 1.3536 G1G2G3G4G13 

Local 3 -1.0503±7.0818i 14.67 1.1271 G2G4G12G13 

Local 4 -0.8538±6.9707i 12.16 1.1094 G6 

Local 5 -1.4621±6.0617i 23.45 0.9647 G2G4 

Local 6 -0.8004±5.2783i 14.99 0.8401 G2G4G9G10G11G12G13G15 

Local 7 -1.2472±5.8457i 20.87 0.9304 G8 

Local 8 -1.1604±5.7432i 19.81 0.9141 G2G3G12G14 

Local 9 -0.9248±5.4296i 16.79 0.8641 G2G4G9G10G11G12G13G15 

Local 10 -0.9911±5.4670i 17.84 0.8701 G16 

Local 11 -1.1221±5.5885i 19.69 0.8894 G2G9G10G12 

Local 12 -1.1511±5.6598i 19.93 0.9008 G10G12G14G15 

 

 This case study is focused on, investigate the important mode on small signal stability 

analysis of power system which is the electromechanical mode (EM). Table 2 illustrates the 

modal analysis of electromechanical mode in 150 kV Sulselrabar interconnected power system. 

It is observed that the test system has 4 inter-area mode and 12 local mode. It is noticeable that 

all of damping value on local mode are above 10%, while the minimum damping requirement is 

5%. Hence the local mode in the test system are robust again disturbance due to higher value of 
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the system. Moreover, the oscillation of the local mode are fast enough to find the steady state 

condition. However for inter-area mode, the probability of the damping performance to fall under 

5% when perturbation occurs is high. It is because there are two modes that the damping value 

are under 10%. Moreover, Table also provide which generator participate in the particular modes 

through participation factor analysis. Furthermore, to mitigate the probability of the damping 

performance fall under 5%, adding additional controller such as PSS and additional device such 

as RFB are essential. 

 

B. Case study 2 

  

Table 3. Electromechanical mode of 150 kV Sulselrabar under different scenarios. 

Mode No PSS PSS RFB PSS RFB Cuckoo 

Inter-Area 

-0.3298±4.0807i -0.3480±4.1576i -2.0596±2.2050i 

-0.4462±4.6039i -0.4091±4.8645i -0.6886±4.0953i 

-0.5050±4.5408i -0.5243±4.7465i -0.5579±4.6337i 

-0.5121±4.5346i -0.5133±4.5343i -0.5140±4.5338i 

Local 

-1.0027±9.4221i -1.0009±9.4134i -0.9985±9.3882i 

-1.0063±8.4356i -2.2602±4.4635i -1.1238±8.3879i 

-1.0503±7.0818i -1.0703±8.4320i -1.8739±7.1439i 

-0.8538±6.9707i -0.8527±6.9688i -5.2144±2.9247i 

-1.4621±6.0617i -1.4367±7.6142i -1.4940±6.3323i 

-0.8004±5.2783i -0.8898±5.5111i -0.8533±6.9712i 

-1.2472±5.8457i -1.2500±5.9814i -1.3520±5.6354i 

-1.1604±5.7432i -1.2481±5.8467i -1.2481±5.8425i 

-0.9248±5.4296i -0.9300±5.4967i -1.0055±5.3427i 

-0.9911±5.4670i -0.9907±5.4673i -0.9920±5.4661i 

-1.1221±5.5885i -1.1381±5.7031i -1.6097±5.3753i 

-1.1511±5.6598i -1.1543±5.6987i -1.4592±5.4420i 

 

Table 3. Damping of electromechanical mode of 150 kV Sulselrabar under different scenarios. 

Mode No PSS PSS RFB PSS RFB Cuckoo 

Inter-Area 

8.06 8.34 68.26 

9.65 8.38 16.58 

11.05 10.98 11.95 

11.22 11.25 11.26 

Local 

10.58 10.57 10.58 

11.85 45.18 13.28 

14.67 12.59 25.37 

12.16 12.15 87.22 

23.45 18.54 22.96 

14.99 15.94 12.15 

20.87 20.46 23.33 

19.81 20.88 20.89 

16.79 16.68 18.50 

17.84 17.93 17.86 

19.69 19.57 28.69 

19.93 19.57 25.90 

 

 The second case study was focused on enhancement of small signal stability performance of 

the system by adding PSS and RFB. Base on the participation factor in case study 1, for inter-

area with damping value less than 5% the contributed generators are coming from G2, G4, G5, 

Muhammad Ruswandi Djalal, et al.

807



 

 

G9, G10, G11, G12, G13, G14, and G15. Based on the [32, 33] the minimum PSS that can be 

installed is half of the generator number. Hence, for this study, the PSS is installed to the G2, 

G4, G5, G9, G10, G11, G12, G13, G14, and G15. Furthermore, from Table 2 it can be observed 

that G2 contribute to the half oscillation modes. Hence, it is essential to add RFB in the G2 to 

enhance the small signal stability performance of the system. 

 To get the best coordination between PSS and RFB an optimization method called CSA is 

used. Tables 3 and 4 show the eigenvalue and the damping performance of different scenarios. 

It can be seen that by adding PSS and RFB the eigenvalue of the system move towards left-half 

plane. This condition can be happened due to increasing damping performance of the system. 

Furthermore, the best damping performance is achieved when CSA is employed as optimization 

method for tuning parameter of PSS and RFB. 

 To validate and verify the modal analysis study, time domain simulation is carried out by 

giving 0.01 step input of load. Figure 7 illustrates the oscillatory condition of rotor speed in G2, 

it can be seen that, system with PSS and RFB experience lower oscillation than base case system. 

It is also observed that the best oscillatory condition is provided by system with PSS and RFB 

based on CSA indicated by smallest overshoot and fastest settling time. Figure. 8 shows the rotor 

angle response of G2 under different scenarios. Lower oscillatory condition are also observed in 

the rotor angle response of the G2. Moreover Table shows the detailed features of overshoot and 

settling time of rotor speed and rotor angle of G2. According to [34], the maximum settling time 

of small signal stability is around 10 second. Hence, only system with PSS and RFB based on 

CSA is capable to achieve this standard. 

 

 
Figure 7. Rotor speed deviation () G2. 

 

Table 3. Detailed featured of rotor speed overshoot and settling time. 

Cases Base case PSS RFB PSS RFB CSA 

Overshoot -0.02387 -0.01956 -0.01393 

Settling time >10 >10 6.843 
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Figure 8. Rotor angle deviation of G2. 

 

Table 3. Detailed featured of rotor angle overshoot and settling time. 

Cases Base case PSS RFB PSS RFB CSA 

Overshoot -0.275 -0.054 0 

Settling time >10 >10 6.017 

 

5. Conclusions 

 This paper investigated the small signal stability performance of 150 kV Sulselrabar by using 

modal analysis. This paper also proposed a method to enhance the small signal stability 

performance of the test system using coordinate controller between PSS and RFB based on CSA. 

From the investigated study cases, it is found that the test system consist of four inter-area mode 

and eleven local mode. It is also found that the damping performance of the test system can be 

categorized as well damped damping. However, there are two inter-area mode that has possibility 

to become critical damping. 

 It is also observed that, the small signal stability performance of the test system is increased, 

when PSS and RFB is installed in the system. It is also noticeable that the best performance is 

shown by system with PSS and RFB based on CSA indicated by smallest overshoot and fastest 

settling time. Further research need to be conducted by integrated RESs in the system and assess 

the small signal stability performance. Designing wide area power oscillation damping can be 

considered to handle the oscillation coming from several sources. Moreover, utilizing another 

metaheuristic algorithm such as grey wolf algorithm, bat algorithm can be considered for 

designing PSS and RFB. 
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