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Abstract: This article presents an advanced continuous wavelet transform (CWT) based 

approach for fault detection and localization in distribution systems using the artificial neural 

network (ANN). In this study, CWT extracts distinct features from the transient signals 

captured from the bus. The derived features are utilized to train and test appropriate ANN 

architecture in different stages to detect and localize the faults. The proposed scheme 

provides an optimum method for classification as well as localization of the various kinds of 

fault with different source short circuit (SSC) level in different locations. The whole detection 

and localization process consists of several stages. In the first stage, it detects faulty feeder. 

The faulty line is identified in the second stage. Finally, in the third stage, fault type and fault 

location are being calculated from the relaying point. The performance of the proposed CWT-

ANN based approach is quite promising as compared to traditionally used algorithms. 

However, a correlation-based feature selection technique is also implemented to reduce 

training time and improve accuracy. This algorithm is tested in 11 kV radial Indian 

distribution network but can be applied in other distribution networks also.  

 

Keywords: Continuous Wavelet Transform, Artificial Neural Network, Fault localization, 

Fault Detection, Unsymmetrical fault, Distribution system. 

 

1. Introduction 

 The rapidly growing demand for electric power leads to interconnection in power systems. 

With the increasing number of interconnections between power systems, it becomes more and 

more complicated [1]. The most important role of all the power system engineers is to ensure 

utmost reliability and continuity of service. It is also essential to reduce the repair time and speed 

up the system restoration after a fault. The outage time of power increases due to old fault 

detection and localization techniques [2]–[6]. It causes massive workforce and time wastage. 

Although there are few types of equipment exist in the substations, which designed to detect and 

localize the faults, do not always give an accurate result.  Therefore, it is highly needed to identify 

the faults and its exact location, so that system restoration process becomes faster. It is not 

feasible to avoid the natural hazards, accidents, and dis-operation of power system equipment. 

The fault causes transients in distribution systems, which are not easy to identify because of their 

short duration. The instrument for measuring the transient are ought to have a high sampling rate 

to give accurate precision in portraying transient conditions concerning their amplitude and 

frequency content. These qualities are fundamental for performing a transient investigation.   

 In the power system literature, CWT based approaches are applied to detect and localize 

faults in the past [2]. However, there are different other methodologies for investigating power 

system transients. The expert systems [7], fuzzy based systems [8], various optimization 

techniques [9], ANN [10], different wavelet transform methods [11], etc, are the various 

favourite techniques. All of the above methodologies suffer from higher computational time, 

lack of robustness and accuracy in performance. Unlike Discrete wavelet transform (DWT) few 

researchers applied CWT [12] for detection [13] of distribution system faults. The CWT is one 

of  the  most  useful  techniques  in  analyzing  system     transients   along  with  soft  computing  
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technologies. In [3] D. Thukaram et al. proposed a fault detection and localization technique 

using principle component analysis (PCA) as an extractor of distinct attributes and support vector 

machine (SVM) and ANN as the classifier and estimation tool. This method is an impedance-

based method. The error in location estimation is nearly around 10 m. In the past several years, 

different researchers have proposed various fault-location estimation techniques. Mirzaei et al. 

[14] and Mora et al. [15] Saha et al. [16] reviewed different methods of localizing faults such as 

impedance-based, frequency, and knowledge-based methods. According to Mirzaei et al., high-

frequency based method along with knowledge-based methods gives a much accurate result in 

fault localization. In continuation of previous literature, Yadav et al. [17] applied DWT and ANN 

to localize fault in double circuit transmission line. It gives accuracy, which is not much higher 

in some cases, and in the distribution network, this algorithm is not tested. In the [18], Saleh et 

al. implemented a DWT based dynamic voltage restorer in a distribution system. Whereas, 

Samantaray et al. proposed combined H-S transform and ANN based fault localizer [19] in 

power transmission system. As in distribution network, previous localization results are lesser 

accurate, or the methods of estimation are complex which results in increasing calculation or 

computational time and indeed increases the complexity of the system. Zhang et al. suggested a 

discernible signal analysis for distribution system [20] ground faults, but the main shortcoming 

of the scheme is that it cannot eliminate the consequences of high impedance fault. Yong et al. 

Proposed a DWT based method to identify the type of fault in the distribution system [21]. 

However, Lovisolo et al. have attempted to detect and localize the fault which causes voltage 

sag and swell [22]. The results provide accurate detection of the fault, but it gives relatively low 

fault localization accuracy (85%). In [23] a CWT-ANN based detection and localization 

algorithm is applied on a hybrid distributed generation systems. The results regarding fault 

localization are encouraging, but it needs to be optimized and implemented in a distribution 

system.  The overall scenario of fault detection and localization algorithm stands on two basic 

pillars, i.e. signal processing and soft computing techniques. The various signal processing 

techniques are well tested. But the soft computing techniques are not the well tested approaches. 

The main reason of not using soft computing techniques for this kind of problems are its black-

box type nature. The various techniques like fuzzy, ANN, SVM and various optimization 

techniques have their own unique and excellent capabilities. But, alone they cannot fulfil the 

requirements of fault detection and localization. However, ANN has the capability of both 

classification and estimation. Further, if ANN combines with feature selection, data-mining and 

optimization techniques, it can become the most efficient one for solving fault detection and 

localization problems. 

 In this work, a multistage CWT-ANN based time-frequency domain analysis is proposed to 

detect and localize fault much accurately as compared to the previous literature of fault 

classification and localization in the distribution system regarding very less error in localization 

and classification in lesser computational time. A 52-bus radial distribution network is 

considered as a test system. Different types of fault are simulated in different fault locations with 

different source short circuit (SSC) level to obtain the transient signals. The CWT is used to 

process these signals and features are extracted from the signal, which after that used in training 

and testing with ANN for fault classification and localization. This work also consists of a 

qualitative comparison of results with related articles. The novelties of this work are as follows. 

• Cross-validation analysis along with ANN is used for classification to give much reliable 

output. 

• In case of fault localization CWT along with ANN is performing well in localizing faults as 

the error in testing is in the range, which is reasonably good in comparison with previous 

works. 

• Considering different dynamically changing loading conditions classification and 

localization accuracy found to be reasonably good. 

 

 

 



 

2. Fault Detection and Localization Algorithm using CWT and ANN 

 Power system fault classification and localization algorithm mainly consist of two tools: (i) 

wavelet transform (WT) and (ii) ANN. Fast Fourier transform (FFT) response of any fault signal 

describes that fault transient signals are non-stationary as so many higher order harmonics are 

there along with the fundamental frequency. Thus, in this scenario, FFT can give the frequency 

response of the signal but cannot provide the time information of the spectrum. To solve this 

problem signals are processed with CWT. The extracted features using CWT needs to be utilized 

in classification and estimation. Several techniques are there such as fuzzy logic, SVM, ANN, 

etc. Among all the soft computing techniques ANN is selected after comparing the capabilities 

of the other tools for this particular problem. 

 

A. Continuous Wavelet Transform (CWT) 

 In mathematics, a square integral of orthonormal series is represented by a wavelet. Presently 

a day, WT is famous amongst the researcher for time-frequency domain analysis. Fourier 

analysis transforms a signal into sinusoids with different frequencies. Similarly, WT splits up 

the signal and coefficients are generated by scaling and shifting of ‘mother wavelet.' Therefore, 

non-stationary signals can be better represented with the class of irregular signals rather than 

with sinusoids. At the end of the transformation, wavelet gives the correlation coefficient which 

provides a time-frequency interpretation of a signal [12], [24]–[27]. 

 

Consider the functions obtained by shifting and scaling a “mother wavelet”  ὸL2(R).  
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Where ‘a’ corresponds to scale or frequency band, b corresponds to time or translation, which 

normalizes the energy across the different scale. The normalization ensures that    a, b (t) = 

  (t). If the admissibility condition is satisfied then,  
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As the admissibility condition gives an opportunity that  (0) = 0 (from discrete Fourier 

transform) due to sufficient decay in  (ω) which is Fourier transform of   (t): 
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The wavelet has band-pass behaviour. To avail unit energy, wavelet has to be normalized. So,  
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As    ȟ(t) 2 =   (t) 2 = 1. The CWT of function f (t) L2 (R) is defined as: 
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Here, the Ὂ  and ὒ  stand for RMS of CWT coefficients and number of coefficients 

respectively. 

 

B. Training & Testing of ANN Algorithm  

 ANN is a tool by which an intelligent system is made with fast decision-making capabilities. 

This work includes two type of ANN algorithm [28][29]. In type 1 ANN is used as classifier 

along with the data mining technique cross-validation. Whereas in type 2, ANN acts as an 

estimator.  

 

1. Classification algorithm (Cross-Validation) 

 Cross-Validation (CV) is a machine-learning algorithm, which splits entire dataset into two 

parts: first one used for training and the second one used for testing of the model. Cross-

validation makes cross-over training and validation sets in such a way that in a successive round 

each data gets a chance to get validated. This way of validating the data is commonly called 

cross-validation algorithm.  



 

For example, if,  i iiX  T  V is the whole data set, training, and validation sets of fold i respectively. 

Here, the ‘fold’ stands for the number of training and validation sets. Therefore, K-fold cross-

validation divide X into k number of sets. If, i=1,...,K, the respective training and validation sets 

can be illustrated in the manner given below in equations. 
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Here, 1 2 3 k, ........V V ,V V  represents the validation set for each fold and the 

2 k, , ......1 3T T T T represents training sets for different sets folds. The whole algorithm runs 

through different iterations (no of folds). The final validation accuracy of the data set is 

determined by the averaging the validation output of the different folds. In this work, 10-fold 

cross-validation is applied on the CWT coefficients calculated from the fault signal for 

classification. 

 

2.  Fault localization using ANN  

 The fault localization algorithm requires a machine learning technique with estimation and 

prediction property in it. The attributes are calculated from the fault signal are utilized to train 

the proper neural architecture in MATLAB [15] environment. The “Levenberg-Marquardt” 

training algorithm is used for the training purpose.  The neural network model used in this work 

is called multilayer perceptron. It computes the weighted sum of the network inputs for each 

neuron. If this sum is greater than the threshold value, it generates an output ‘y’, which is 

explained in Eqn. 7. Eqn. 8 gives the output where ‘f’ is the step activation function calculated 

from Eqn. 9. Therefore, the total no of the element is (n+1) for ‘n’ incoming signals. 
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3. Flowchart and Description of the Proposed Approach 

 The proposed scheme for fault classification and localization is shown in Figure. 1 and Figure. 

2. When a fault occurs in the system, the algorithm at first detects the feeder in which the fault 

has occurred. In the next step, it will detect the faulty line. The response from the sending end of 

the faulty line then used for fault detection and determining fault location. Thus proposed 

methodology achieves the accuracy in analyzing fault type and location in the distribution system. 

In this work, CWT - ANN based algorithm is used for fault classification and localization on a 

52 - bus distribution system in different stages. The Figure. 1(a) describes the process of the 

faulty feeder and faulty line detection, i.e., in which feeder the fault occurred and in which line.  

 To begin with, measurement of current signals from all the feeder and lines are taken. Further, 

the current signals from three feeders are processed using CWT with ‘coiflet3', "Daubechies4", 

and "morlet" mother wavelet and in proper scales. The RMS of the coefficients obtained by 

applying CWT then classified using ANN (cross-validation) algorithm to find the faulty feeder. 

Once, the faulty feeder is found, the similar approach is taken for finding out the faulty line. Here, 

the current signals from each bus of the faulty feeder are considered for the faulty line detection 

using the same CWT-ANN based approach. As the faulty line is detected, RMS of CWT 

coefficients of the faulty line current signal is taken for the classification of fault. Similar to the 

faulty feeder and line detection, cross-validation technique is used for the fault type identification. 

On the other hand, the same CWT coefficients are put in the FFNN for the localization of fault. 
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Figure 1. Fault detection and localization process flow diagram; (a) Faulty feeder and line 

detection, (b) Fault type identification and fault localization. 

 

 The best neural architecture for fault localization is obtained after several rounds of training. 

In Figure. 1 (b) fault type detection and fault localization process are shown. In this three-stage 

detection and localization of faults, CWT is used as signal processing tool and ANN for machine 

learning. A brief description of various steps of the whole fault detection and localization are 

presented below: 

• 52-bus 11 kV radial distribution system is modelled in MATLAB-SIMULINK.   

• Fault data with SSC level: 20, 25, 30, 35, 40, 45, and 50 MVA and four different types of 

fault are acquired with a sampling frequency of 50 kHz.  

• Signal processing using CWT with ‘coiflet3’, “Daubechies4”, and “morlet” mother wavelet 

and in proper scales.  

• The RMS values of the CWT coefficients are calculated.  

• The faulty feeder detection is done with the features obtained from feeder end using cross-

validation and ANN. 

• The faulty line detection is done with features obtained from different buses of the faulty 

feeder using cross-validation and ANN. 

• Fault type detection and fault localization are done with the features obtained from the 

sending end currents of the faulty line using cross-validation and ANN respectively. 

  

 The configurations of the test system are Base kVA: 1000 kVA, Base voltage: 11kV, Type 

of the conductor used: ACSR, Resistance of any line: 0.0086 pu / km, Reactance of any line: 

0.0037 pu / km. All the simulations are performed here on a PC with Intel Core i7-3770 processor, 

which has a processor speed of 3.40GHz.  
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4. Simulation Results and Analysis 

 In this study, a 52-bus practical Indian network is considered for fault detection and 

localization. The 52-bus distribution network is modelled with MATLAB-SIMULINK to 

simulate the system. Line and load data can be obtained from [3]. The 52 bus test system is 

shown in Figure. 2. In Figure. 2 “line 2-3” is shown as a fault line. 
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Figure 2. 52 bus test system and segmentation of Line 2-3[9] 

  

 For fault detection, different conditions are simulated. The sampling frequency of 50 kHz is 

taken for the sampling of single end current signals. The captured signals then processed with 

CWT. The attributes are computed from the processed data. The attributes calculated are 

supplied to ANN for fault classification and localization.  

• Simulation is done with SSC level: 20 MVA to 50 MVA. 

• Different fault locations: 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 percent of the line from 

sending end. 

 Among three feeders, the tests are performed on line 2-3 (the line between bus-2 and bus-3). 

This line is 5 km long, and it is further segmented into ten parts, each equivalent to 500 m of line. 



 

The Line segment model is shown in Figure. 2. These line segments represent different locations 

of a particular line. On this line, different types of faults are simulated in 10 different locations 

with 20, 25, 30, 35, 40, 45 and 50 MVA source short-circuit level to build the training set. All 

the measurements are taken from sending end (node B1 in Figure. 2 segmentation model) of the 

line. Some of the three-phase current signals obtained from bus-2 is shown in Figure. 3 (a)-(d) 

which correspond L-G (line to ground) fault, L-L-G (double line to ground) fault, 3ph-G (3-

phase to ground) fault, and L-L (line to line) fault, respectively. These transient signals need to 

be processed in time-frequency domain for extracting the information. In this study, the CWT is 

selected as a signal-processing tool.  

 

Figure 3. 3-phase current waveform captured from 52-bus radial distribution system for the 

different type of fault; (a) 3-phase current waveform for L-G fault, (b) 3-phase current 

waveform for L-L-G fault, (c) 3-phase current waveform for 3ph-G fault, (d) 3-phase current 

waveform for L-L fault. 

 

 Various signal-processing tools such as FFT, short time Fourier transform (STFT) and 

wavelet, etc. are available which can perform frequency or time-frequency domain analysis. 

However, the transient signals for faults are non-stationary. The FFT is only suitable for 

stationary signals, as it does not carry the time information. On the other hand, the STFT provider 

a time-frequency transformation but it has a resolution problem due to its fixed window length. 

The CWT eliminates all the shortcomings of STFT and becomes a much favourite signal-

processing tool to be used for fault transient analysis.  

 

A. Mother-Wavelet and Scale Selection 

 The frequency domain response of the fault current signals indicates the presence of third 

harmonics. Therefore, to implement CWT, proper mother wavelet and scale selection is the most 

important thing to be taken care of. After applying ‘scalogram’ technique on various mother 

wavelets such as ‘coiflet3’, ‘Daubechies4’, and ‘morlet’ etc.  the proper scales are selected to 

analyze the third harmonics in the current signal. The selected scale for “coiflet3” mother wavelet 

is 234, 235, 236, 247 and for “Daubechies4”, the appropriate scales are 237, 238, 239, 240. 

Whereas, the scales selected for ‘morlet’ wavelet transform are 270, 271, 272, and 274. Therefore, 

from 3-phase fault current signals captured from different nodes, the CWT coefficients are 

obtained. Different source short-circuits level and fault location are considered for four different 

predominant fault types.  
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Figure 4. 3D CWT plot for different fault current signals with ‘coiflet3’ as mother wavelet and 

in 22 to 25 scale; (a) CWT plot for L-G fault, (b) CWT plot for L-L-G fault, (c) CWT plot for 

3ph-G fault, (d) CWT plot for L-L fault. 

 

 Figure 4 (a)-(d) represents the 3D CWT coefficient plots for various faults. Here, in these 

plots, three axes are time (x-axis), scale (y-axis) and coefficients (z-axis). Thus, time localization 

of the harmonic frequencies with different amplitude occurs. 

 

B.  Feature Selection for Detection and Localization Algorithm 

 The problem of feature selection is to take a set of candidate features and select a subset that 

performs the best under some classification system. This procedure can reduce not only the cost 

of recognition by reducing the number of features that need to be collected, but in some cases, it 

can also provide better accuracy due to finite sample size effect and lesser training time too. 

Feature selection needs two parameters. 

I. Attribute evaluator 

II. Method  

 

 In this case, correlation-based feature selection (CFS) subset evaluator is used for evaluating 

all the attributes regarding the correlation coefficients and the best-first search algorithm is used 

for searching the best features among all. Total 120 features (RMS, standard deviation, crest 

factor, mean, maxima, minima, kurtosis, variance, skewness and median for 3 phases and in four 

different scales) are initially considered for the detection and localization purpose, which later 

reduced to 12 (RMS of 3 phases and four different scales) attributes. With the minimization of 

the total number of attributes by 1/10, the entire training time has also gone down accordingly. 

This attribute selection was performed in WEKA.  

 

C. Fault Detection and Faulty Line Detection Results 

 When a fault occurs, it is the very much primary thing to identify or detect the fault type to 

understand the severity of the fault. During the fault, the breaker trips at the feeder end. The 

current signals captured from the feeder also taken for the further analysis to determine fault type. 

Initially, CWT coefficients are calculated, and further, the statistical features/attributes (RMS) 

are derived from the CWT coefficients. Thus, total 12 features/attributes are obtained (i.e., for 

3-phases - four different scales). Four-class fault type classification using 10-fold cross-

validation analysis result is presented in Table 1. The confusion matrix for classification is shown 

in Table 2. Figure 5 shows the graphical representation of fault classification clustering plot with 

ANN. It represents the graphical training result using ANN for fault classification. 
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Table 1. Four class fault type classification results using 10-fold cross-validation 

  

 

Table 2. Confusion matrix for classification of faults using cross-validation 

 

 

Table 3. Faulty line detection results using 10-fold cross-validation  

for the different type of faults 

 

 
Figure 5. Clustering plot for fault classification using ANN 

 

 In fault detection and localization, the sampling frequency is considered 50 kHz. However, 

from the fault detection results, it is evident that the CWT-ANN based algorithm successfully 

detects the fault type among four different classes. In fault classification, the data used for signal 

processing and further analysis is captured from the faulty feeder. In the next stage, faulty line 

detection is very much essential to localize the fault successfully. The signals are recorded from 

sending-end of all the lines. Captured signals then pass through CWT and the features It shows 
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3Ph-G 1700 100 100% 

L-L 1700 100 100% 



 

the detailed method, result and the efficiency of the CWT-ANN based algorithm. Thus the 

overall comparison between [3] and the current study is established. Finally, these features help 

to detect the faulty line as ANN successfully classifies the faulty line from the healthy line. The 

line detection result is shown in Table 3.  

 

D. Fault Localization Results 

 The fault localization requires precision in the results, as several impedances based methods 

are not that accurate in a real scenario. The CWT-ANN based localization algorithm uses the 

RMS data calculated for different fault scenario for the training of appropriate neural architecture. 

The different fault scenario consists of different fault, different SSC level, and various location. 

Table 4 corresponds to the results for fault location with different mother-wavelet and different 

type of fault. At the end of the analysis using several mother wavelets and ANN it is found that 

the error (the difference between actual fault distance and the average network output) lies nearly 

in a range of 1.15 m to 1.63 m with Daubechies4 mother-wavelet, which is reasonably good, 

compared to the previous studies. The other mother-wavelets ‘Coiflet3’ and ‘Morlet’ are also 

performing well after selecting proper scale. But, the results show the superiority of ‘Daubechies' 

mother-wavelet over others on the basis of performance error. 

 

Table 4. Fault localization results using CWT-ANN based algorithm 

P
re

se
n

t 
W

o
rk

 

Fault 

Type 

Mother 

Wavelet 

FFNN 

Architecture 

Number 

of 

Epochs 

Performance 

Error 

Error in 

Distance(m) 

L-G 

Morlet 

8:8:1 

1000 1.83e-07 1.59 

L-L-G 1000 3.44e-07 2.16 

L-L 1000 1.13e-07 1.22 

3Ph-G 1000 3.13e-07 2.11 

L-G 

Coiflet3 

301 9.98e-08 1.14 

L-L-G 1000 1.08e-07 1.22 

L-L 174 9.87e-08 1.20 

3Ph-G 1000 1.78e-07 1.61 

L-G 

Daubechies4 

136 9.49e-08 1.15 

L-L-G 141 9.91e-08 1.22 

L-L 139 9.41e-08 1.23 

3Ph-G 1000 1.76e-07 1.63 

 

Figure 6. Training performance plot of fault localization using ANN for L-G fault with 

different mother wavelets; (a) Morlet, (b) Coiflet3, (c) Daubechies4. 
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Figure 7. Percentage error plot for localization of fault using “coiflet3” mother wavelet; (a) 

CWT plot for L-G fault, (b) CWT plot for L-L-G fault, (c) CWT plot for 3ph-G fault, (d) CWT 

plot for L-L fault. 

 

 

Figure 8. Percentage error plot for localization of fault using “Morlet” mother wavelet; (a) 

CWT plot for L-G fault, (b) CWT plot for L-L-G fault, (c) CWT plot for 3ph-G fault, (d) CWT 

plot for L-L fault. 

 

 
Figure 9. Percentage error plot for localization of fault using “Daubechies4” mother wavelet; 

(a) CWT plot for L-G fault, (b) CWT plot for L-L-G fault, (c) CWT plot for 3ph-G fault, (d) 

CWT plot for L-L fault. 

 

 Figure 6 depicts the performance plot of the fault localization-training algorithm using ANN 

for L-G fault with different mother wavelets, and it differentiates between the mother wavelets. 

Figure. 6 also shows that the training performance with ‘Daubechies' and ‘Coiflet’ mother-

wavelet is much better compared to other mother wavelets and it is converging in lesser number 

of iterations.  Moreover, Table 5 shows that the difference in method and algorithm can make 

the improvements in the results. However, in all the cases, the test system is same, but the 

significant difference in the algorithm is CWT is used as a signal-processing tool in present work. 

Whereas PCA is used in the literature of [3] as feature extractor. The stationary wavelet transform 

is used in [4] along with impedance information, path characteristic frequencies (PCFs) used 

using a traveling wave based method in [5] and ‘symlet' wavelet is used in [6]. However, the 

present CWT-ANN based algorithm comprises better feature extraction and better neural  
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Table 5. Qualitative comparison with the previous literature of works 

Basis of 

comparison 

Thukaram, 

Khincha, 

and 

Vijaynarasi

mha 2005 

[10] 

Salim et al. 

2008 

[23] 

Pourahmadi-

Nakhli and 

Safavi 2011 

[24] 

Dhend and 

Chile 2017 

[25] 

CWT-ANN based 

approach (Present 

Work) 

Modelling & 

Data 
acquisition 

52 - bus 11 
kV Radial 

distribution 

system 

Distribution 

system 

6-bus test 

distribution 
network 

15 bus smart 
grid 

distribution 

system 

52 - bus 11 kV Radial 

distribution system 

Fault classification 

Domain of 
Analysis 

Time domain 

Time-

frequency 

domain 

Travelling Wave 
Time-frequency 

domain 
Time-frequency domain 

Network 

Simulation 

Variations 

SSC level:20 

- 50 MVA 
N/A N/A 

Different fault 

location, and 

fault type 

SSC level:20, 25, 30, 

35, 40, 45 and 50 MVA 

Signal 

Processing 
N/A 

Stationary 
wavelet 

transform 

N/A 
‘Symlet’ 

discrete WT 

CWT with Daubechies4 
is taken as the mother 

wavelet. 

Feature 
Extraction 

Principal 
components 

Current 
signal’s 

energy 

informatio
n 

N/A 

Standard 

deviation 
(STD) of the 

coefficient 

RMS of CWT 

coefficients obtained 

from the signals 

Classifier 

Used 

SVM and 

ANN 
ANN N/A N/A ANN 

Fault 

Classification 

Result 

Correctly 
Classified 

Correctly 
Classified 

N/A 

Correctly 

classified by 

STD 

SVM: 100% (correctly 
classified 

instances :1800) 

Cross-Validation 
Result: 100%. 

Fault localization 

Domain of 

Analysis 

Impedance-

based method 

Time-

frequency 
domain 

Time-

frequency 
domain 

Time-frequency 

domain 

Time-frequency domain 

(CWT) 

Network 

Simulation 

Variations 

SSC level and 

fault 

Location. 

Different 

fault 
location, and 

fault 

resistance, 
inception 

angle 

Different fault 

location, fault 

resistance, 
SSC level, 

inception 

angle 

Different fault 

location, and 

fault type 

SSC level and different 
kind of fault is 

considered in various 

fault location: 10- 
100% of the line. 

Signal 
Processing 

PCA 

ANNs and 

immune 
algorithm 

optimization 

Wavelet-based 

Multiresolutio

n analysis 

‘Symlet’ 
discrete WT 

CWT with Daubechies4 

is considered as the 

mother wavelet. 

Feature 

Extraction 

Principal 
Component 

Analysis 

(PCA) 

Impedance 

Information 

Path 
characteristic 

frequencies 

(PCFs) 

Standard 

deviation of 
coefficient 

RMS of CWT 

coefficients of the 
signal. 

Localization 
tool used 

SVM, ANN 

(Architecture: 

3-3-1) 

ANN ANN 
Fault locating 

factor 
ANN (Architecture: 8-

8-1) 

Localization 
accuracy 

ANN: 100-
300m; SVM 

and PCA: 

approximatel
y 10 m 

Localization 

Error: 
Between 1% 

and 7%. 

The error lies 

between 0.9 m 

- 970 m. 

Detects faulty 
bus (location) 

but does not 

give exact fault 
location. 

Minimum error: 1.15 m 
Maximum error: 1.63 m 

 

network performance for estimating fault location with lesser performance error. The detailed 

localization result of for four type of faults are shown in Figure. 7, 8 and 9 that shows the 

testing error plot for each sample for different mother wavelets. The best average error in 



 

localization is only 1.15 m to 1.63 m with Daubechies4 mother-wavelet, which proves the 

efficiency of the proposed algorithm compared to existing impedance based algorithms. Table 

5 represents a comparison of the methods as well as results with [3]–[6] as different methods 

have been applied to the distribution systems to detect and localize faults. Given the 

comparison, the present study offers better accuracy than others do. The methods used in [4]–

[6] localizes the faulty bus. Moreover, unlike present study, they do not pinpoint the exact fault 

location accurately. 

 
E. Fault Detection and Localization under Dynamically Changing Load 

 The power system is dynamically changing regarding topology, loading, etc. The impact of 

this change mainly comes due to the dynamically changing load [15]. With the change in load, 

the steady-state value of the current also varies. Thus, the pattern of the transient also changes 

for different loading conditions. In this scenario, it is essential to detect and localize fault 

accurately. In this work, along with SSC level, the load has also been varied, and the performance 

of fault classification and localization algorithm is recorded. Two types of loading condition 

considered here are uniformly varying load (20%, 50%, 70%, and 100% of above base load value) 

in all buses and randomly varying load in all busses. These conditions are taken into account 

while capturing the signals for ten different locations and 7 SSC level for building training and 

testing data for ANN.   

 

 
Figure 10.  Percentage error plot for fault localization under different load variation; (a) 20% 

increase in load (uniform), (b) 50% increase in load (uniform), (c) 70% increase in load 

(uniform), (d) 100% increase in load (uniform), (e) Non-uniform load variation. 

 

- Uniformly changing load  

The performance of CWT-ANN based fault detection and localization algorithm is shown below. 

Table 6 shows the classification accuracy for the cross-validation analysis. Figure.10 (a, b, c, d) 

represents the fault localization accuracy under varying loads condition on the 52-bus system. 

For classification, there are 400 samples for each type of fault and the Total data in training set 

is1600, which gives a classification accuracy of 100%.  In case of localization Figure.10 (a, b, c, 

d) shows the four testing results for different loading conditions with the result of 100 test 

samples each. The average testing error in 20%, 50%, 70% and 100% increase in load are 4m, 

2m, 0.5m and 3m respectively. This is much more accurate than the results reported in the 

existing works of literature under load variation. 

 

- Randomly changing load  

In practical cases, the system load changes non-uniformly and it is necessary to consider non-

uniform load variation in the system while testing the CWT-ANN based algorithm. In this work, 

0 20 40 60 80 100
0

0.5

1

Samples

E
r
r
o

r
 (

%
)

0 20 40 60 80 100
0

0.5

1

Samples

E
r
r
o

r
 (

%
)

0 20 40 60 80 100
0

0.5

1

Samples

E
r
r
o

r
 (

%
)

0 20 40 60 80 100
0

0.5

1

Samples

E
r
r
o

r
 (

%
)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Samples

E
r
r
o

r
 (

%
)

(a) (b)

(d)(c)

(e)



 

system load is varied non-uniformly for each bus to build the training data for the neural network. 

Seven different load data set in which load at each bus is randomly varied is used in this case 

study. The testing result considering non-uniform load variation is shown in Figure. 10 (e). A 

total number of training data for the training of ANN is 7000.  

 

Table 6. Comparison of fault localization results under load variation 

Loading 
Fault 

Type 

FFNN 

Architecture 

Number 

of 

Training 

Samples 

Number 

of 

Epochs 

Best 

Performance 

Error in 

Distance(m) 

Computational 

Time(sec) 

Normal 

L-G 

 

5:8:1 

 

1750 120 9.99e-06 5.56 2.42 

20% 

increase 
900 60 9.46e-07 4 0.94 

50% 

increase 
900 80 9.53e-07 2 1.20 

70% 

increase 
900 113 7.74e-07 0.5 1.60 

100% 

increase 
900 226 9.94e-07 3 3.06 

No-

Uniform 
7000 500 3.047e-05 4.45 26.91 

 

 In Table 6, the performance of CWT-ANN based algorithm under different load variation is 

shown, which shows the ability of the algorithm in working under randomly load variation. In 

case of randomly changing load, the number of training samples required is much higher than 

other cases. It also needs more iteration for achieving the performance goal, thus, resulting more 

computational time. The computational time would not be an issue as several high-performance 

processors are available which are capable of reducing the computational time. 

 

5. Conclusion 

 In the problem of fault classification, time-frequency domain response is efficiently working 

to discriminate the faults in much lesser computational time. Here, among all features, the most 

crucial feature is found to be RMS, which offers a better accuracy for both detection and 

localization. This algorithm provides a very efficient scheme to detect and localize faults in radial 

distribution systems. With a good percentage of accuracy in detection, this algorithm has also 

minimized the localization error between 1.15 m and 1.63 m with “Daubechies4” mother-

wavelet, which is a much better result as compared to the results reported in the similar works 

with other mother wavelets. The proposed CWT-ANN algorithm also gives promising in load 

varying conditions. This algorithm provides 100% classification accuracy for both fault type 

detection and the faulty line detection. The testing results describe the superiority of the 

algorithm as it successfully detects and localizes the faults with a minimum error margin. 

However, there is an ample amount of future scope in this field of research, which will emphasize 

the reduction of errors considering more parameters and computational burden in the localization 

fault in distribution systems. 
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