

 International Journal on Electrical Engineering and Informatics - Volume 1, Number 2, 2009

92

An Infrastructural IP for Interactive MPEG-4
SoC Functional Verification

Trio Adiono1, Hans G. Kerkhoff2 & Hiroaki Kunieda3

1Institut Teknologi Bandung, Bandung, Indonesia

tadiono@paume.itb.ac.id
2MESA+ Institute for Nanotechnology, 7500AE Enschede, the Netherlands

h.g.kerkhoff@utwente.nl
3Tokyo Institute of Technology, Tokyo, Japan

kunieda@vlsi.ss.titech.jp

Abstract: This paper introduces a specific architecture including an infrastructural IP for
functional verification and diagnostics, which is suitable for functional core-based testing of an
MPEG4 SoC. Our advanced MPEG4 SoC results in a high complexity SoC with limited
physical access to many different functional cores. The proposed test method provides direct
monitoring and control for each core, which enables core verification at actual speed. It
significantly decreases the verification time due to the large number of required test vectors in
typical MPEG4 verification. Furthermore, it also makes the system scalable for functional core
expansion due to upgrading of standards. The proposed infrastructural IP is also linked to PC-
based interactive tools to simplify the verification of individual and integrated cores. It also
provides detailed diagnostic data that enables simple system debugging. The debugging tools
also feature test-pattern generation and simulation of expected values. Actual system
implementation has shown full functionality of our proposed method.
Keywords: functional MPEG-4 verification; infrastructural IP; SoC testing.

1. Introduction

Advances in MPEG4 video standard development has resulted in complex SoCs which
features a high logic density and a large number of pins. They consist of many dedicated
hardware processing cores [1-3] such as a Discrete Cosine Transform (DCT), Inverse DCT
(IDCT), Variable Length Coding (VLC), Quantizer (Q), inverse-Quantizer (IQ), Motion
Compensator (MC) and Motion Estimator (ME) etc., which possess many different functions.
Although large numbers of pins are required, the designer still has very limited access to each
processing core inside the SoC.

In order to optimize chip-level verification, debug and program chip functionality,
embedded core logic is incorporated in this design as an embedded infrastructural IP.
Incorporating an embedded infrastructural IP provides the physical access to all processing
cores inside the SoC, which surpasses the limitation of pin numbers, helps silicon debugging,
improves test quality and increases the manufacturing yield. Furthermore, it also enables
further functional development extensions to the device functionality, in order to cope with the
latest advances in the video coding standard.

The utilization of a standard testing approach such as IEEE 1500 [4] has a limitation in
providing a large number of test patterns. MPEG processing requires very specific test-pattern
data, which usually consist of two- dimensional datas, which have continuity in the time
domain. In addition, a significant amount of memory should also be provided to store the
processing result. To preserve external compatibility with IEEE 1500 and 1149.1, a standard
TAP controller is used as access mechanism for our approaching, in combination with a
dedicated infrastructural IP.

My Computer
Text Box
Received: August 10, 2009. Accepted: September 15, 2009

My Computer
Note
Accepted set by My Computer

My Computer
Note
MigrationConfirmed set by My Computer

My Computer
Note
Marked set by My Computer

My Computer
Line

93

This paper is organized in the following way. Section II will present the verification
methodology proposed in this paper. In Section III, experiments are conducted to evaluate the
effectiveness of the proposed verification methodology. Finally, a summary is provided in
Section IV.

2. Verification Methodology
2.1 Architecture System

Hardware-software co-design has been employed to build an integrated system for
functional core verification in an MPEG4 SoC as shown in Fig.1. Most of MPEG4 processing
is performed with respect to a 16 x 16 pixels input image data (macro-block); the dedicated
hardware processing core to perform this operation is called Macro-block Processing Unit
(MPU). A typical MPU core is a DCT, IDCT, Q, IQ, VLC, IVLC, ME and MC. As seen in
Fig. 1, the light box labelled “cores to be tested” is shown in the SoC as many MPUs those are
connected to a single bus.

In the infrastructural IP part, the Core Test Interface (CTI) handles the verification data
communication between the SoC and a host computer. Based on instructions and test patterns
generated by the host computer, the Core Test Processor (CTP) inside the SoC controls the
verification process for each functional core. Both the CTI and CTP are embedded in SoC as
an infrastructural IP (I2P).

The test patterns are generated by the diagnostic tools. The test pattern generation depends
on the core that is going to be tested. The test pattern can be an original image sequence, bit-
stream data, or a special test vector for a functional core that is generated from simulations.
Therefore, the diagnostic tools have the capability to simulate all of the functionality of a core.
They also have the same computational algorithm to ensure the same computational result
between the simulation and hardware processing result.

The test pattern that is generated by diagnostic tools is downloaded into the Frame Store
Memory (FSM) of the SoC. During actual operation of the SoC, the FSM is used for storing
image frame data. Utilizing available system memory of the SoC reduces the additional
hardware for test-pattern data storage.

However, to assign the MPEG SoC to process a test vector at a certain location, one needs
to have a core test processor (CTP) as part of an infrastructural IP inside the SoC. This
processor also has a programmability function in order to support all processing core testing.
Therefore, before starting the testing, the diagnostic tools have to download data in the
program memory of the CTP.

The CTP is also designed for being able to be controlled by the diagnostic tools.
Communication between the diagnostic tool and the SoC is implemented via the IEEE TAP
controller [4] circuit. This controller is used because a small number of pins are required (3)
and relatively little additional logic in the SoC for interfacing. Moreover, it can also be used
during structural testing of (wrapper-equipped) cores. Through this interface, the host
processor can start, stop, and configure cores with special processing parameters.
Similar to the case of actual signal processing, the verification result data is stored inside the
FSM. In the final stage, diagnostic tools can upload result data into the host computer, and
carry out comparisons with simulated results. With the programmability features, one may
configure the SoC for many different cases of verification, which result in diagnostic
capabilities of the system.

2.2 The Core Test Interface (CTI)

The CTI handles the communication between CTP and host computer. Through this
interface and the TAP controller, the host computer performs functional verification of the SoC
by Read/Write (R/W) access to the registers of the CTP, Program Memory (PM) and FSM. By
setting the register values of the CTP, the host computer can execute the verification program
inside the PM. The test-bench data for verification is also written by the host computer

Trio Adiono, et al.

94

through this CTI. By accessing the PM, the host computer can replace the test program inside
the PM for another verification procedure anytime. As consequence, the amount of testing is
only limited by the PM size.

Functional verification system architecture.

The CTI consists of address decoding and data multiplexer circuits. They determine which
address to be R/W by the host computer.

As the construction of a typical SoC system consists of many dedicated hardware MPUs,
system control can be done through registers. Registers can be used for dedicated enable and
reset of each core. In the other case, it can also be used for system configuration, such as
image size, data scheduling etc.

2.3 The Core Test Processor (CTP)

The Core Test Processor is designed for applying test pattern data to each Macro-block
Processing Unit (MPU). Therefore, the CTP must be able to access memory data inside the
FSM according to each MPU data input-output scheduling. As a video-based MPU typically
accesses the data in terms of pixels, in block or macro-block form, the CTP has been designed
to be programmable for this type of data scheduling. As shown in Fig. 2, the CTP can access
data in the scheme that also follows the MPEG input data format.

The memory data access scheme.

An Infrastructural IP for Interactive MPEG-4

95

As defined in the MPEG4 standard [5], the input image data is presented in CIF format. In
CIF format, image data is subdivided into a macro-block (16 by 16 pixels) and a block (8 by 8
pixels). To represent a 16 x 16 pixel image data, each macro-block data consist of four blocks
of luminance data (Y) and two blocks of chrominance data (Cr and Cb).

2.3.1 CTP Architecture

In order to generate the FSM address of an MPEG-4 core, a Core Test Processor (CTP), as
part of an embedded infrastructural IP in MPEG4 SoC system, is designed as shown in Fig. 3.
The CTP is designed as a programmable processor that generates an address by executing
instructions in a Program Memory (PM). The program is designed to apply a test pattern and
perform verification inside an MPEG-4 core. The executed instruction inside the PM is
determined by the Program Counter register (PC). In order to generate the sequence of an
address for memory R/W operation, the dedicated Loop Generator (LG) is designed. Using
this unit, pixel, block or macro-block memory data R/W operations become possible. The LG
generates the address sequence with respect to the zero position (Fig. 2). In order to randomly
access a certain pixel, block or macro-block position, an offset address should be added with
reference to the pixel, block or macro block position that is stored in the registers (REG_X and
REG_Y). For this purpose, ALU_X and ALU_Y are used to add REG_X and REG_Y to the
address value generated by LG. X and Y are separated, in order to easily access the data block
in a two-dimensional position.

Using the Module Selector register, one can determine which core is going to be tested.
Each functional core has a unique core number.

As can be seen in Fig. 3, the registers have been divided into two groups, which are byte-
and word-oriented registers. With byte registers, one can have registers with much data
addressing capability (212). On the other hand, a word register is designed for large amounts of
data, with a small number of registers (maximum is 24).

Control signals inside the CTP are generated by the controller. It operates in 3 stages,
Instruction Fetch (IF), Decoding (DEC) and Execution (EXE). In the IF stage, the instruction
pointed by the program counter is transferred from the program memory into the instruction
register. Start and stop of the CTP Controller unit is controlled by a RUN register value inside
the Byte Control Registers.

Data
Multiplexer

Program
Memory

Byte Control Registers

Program Counter

Instruction Reg.

Module Selector

Loop Generator

Reg X

Reg Y

ALU Y
ALU X

Controller

Instruction Decoder

Data

Address

Core Test
Processor

(CTP)

to Core Test Interface (CTI)

FSM Address Bus

Word Control Registers

The Core Test Processor architecture.

In the DEC stage, the data from the instruction operand value is extracted. This operand

value is used for the CTP configuration which is dependent on the instruction type. For an
instruction type related to memory access, which will be explained in next section, this operand

Trio Adiono, et al.

96

value is used to configure the maximum loop of the loop generator and Reg X and Reg Y. For
an instruction related to program control, the operand value is used to determine the program
counter value. For a function specific instruction, the operand value is used to set a specific
register value, such as the module register or motion vector register.

In the EXE stage, the operation depends on the instruction. In a memory-access type
instruction, such as IRD_LINE, IRD_COLUMN, IWR_LINE and IWR_COLUMN, the loop
generator performs a looping operation to generate an address according to the maximum loop
value defined in the instruction operand data. The amount of required clock cycles for this
execution stage depends on the amount of generated addresses. Since in the rest of the
instruction the operation is only to set the register value, the designated register value will be
set in this stage within a clock cycle.

In order to inform the host computer with regard to the completion of the processing, an
interrupt controller is used, where the host computer can detect its status by reading the
interrupt controller value. Therefore, the host computer needs to observe this value after
setting the run registers to a high value.

2.4 Instruction Sets

Instruction sets are designed in order to provide flexibility with regard to the application of
test patterns to the MPU and perform verification. As consequence, three instruction types can
be distinguished: Register Access, Memory Access, and Program Control. An instruction
consists of three bytes of data as shown in Fig. 4.

INST : Instruction,

INST OPND0 OPND0 OPND1

4 bits 4 bits 8 bits 8 bits

OPND : Operand.
The instruction format.

The complete list of instructions is shown in Table 1.

2.4.1 Memory Access Instructions

These types of instructions Read/Write the data from the frame store memory according to
the instruction’s operand value. Using the instructions IRD_LINE / IWR_LINE or
IRD_COLUMN / IWR_COLUMN one can Read/Write the frame store memory data in
horizontal (LINE) or vertical (COLUMN) direction; one can also perform pixel, block or
macro-block data access as described in Fig. 2 by setting the Δ value of the instruction
operand. The ∆px and ∆py operand values determine the size of the group of pixels to be read
in x and y direction. As consequence, if one sets ∆px and ∆py to the maximum value (∆px=7,
∆py=7), one will access those pixels as block of data. As another example, if one sets ∆px=0
and ∆py=7, it will read/write a line of 7 pixel data in y direction.

In the same way, ∆bx and ∆by operand values determine the amount of block data to be
read/write. And also if one sets them to the maximum value (∆bx=2, ∆by=1), it will access a
macro block of data. The same case is also applied to the ∆mbx, ∆mby operand values. One
can set them to access the data in macro-block format.

Different from the above read/write instructions, the ISET_ADD and IINC_ADD
instructions are used to manipulate the reference address position for pixel, block or macro-
block data read/write. The ISET_ADD instruction sets the reference address to its operand
value which consist of pixel (px, py), block (bx, by) and macro-block position (mbx, mby).
Therefore, one can set the reference position of data to be read inside a frame.

Instruction IINC_ADD increases the current address according to its operand value.
Increment is done independently among px, bx, and mbx. Second complement representation

An Infrastructural IP for Interactive MPEG-4

97

is used for operand representation. Therefore, using this instruction one can also decrease the
address value. Different to ISET_ADD, this instruction is designed for relative address setting
according to the current position. Usually it is useful for address setting inside a loop
condition.

Instruction sets of the Core Test Processor. fno : frame number. ∆mbx, ∆mb: number of
macro blocks to be R/W. ∆bx, ∆by: number of blocks to be R/W. ∆px, ∆p: number of pixels to
be R/W.

Instruction name & Operand
Memory Access Type
IRD_LINE(∆mbx, ∆bx, ∆px, ∆mby, ∆by, ∆py)
IWR_LINE(∆mbx, ∆bx, ∆px, ∆mby, ∆by, ∆py)
IRD_COLUMN((∆mbx, ∆bx, ∆px, ∆mby, ∆by, ∆py)
IWR_COLUMN((∆mbx, ∆bx, ∆px, ∆mby, ∆by, ∆py)
ISET_ADD(fno, mbx, bx, px, mby, by, py
IINC_ADD((fno, mbx, bx, px, mby, by, py)

Program Control
IJUMP(dest_add)
ICALL(dest_add)
IRTN
IWAIT(n)
ISTOP
Function Specific
ISET_MOD(module_no)
ISET_MV(mvx, mvy)

2.4.2 Program Control Instructions

Several instructions are designed to control the program execution flow, such as IJUMP,
ICALL, IRTN, IWAIT and ISTOP. The IJUMP instruction is used to execute the instruction
in the destination address (dest_addr). By this instruction one can perform a loop operation or
share several program routines for different functionality. Beside IJUMP, we also provide the
ICALL instruction for execution of a subroutine program. This instruction helps to reduce the
number of instruction lines by making many program routines for the subprogram that is
frequently used. In order to return to the instruction after the ICALL instruction, the IRTN
instruction is used.
The instruction ISTOP is used to terminate the program execution. Therefore, this instruction
must exist at the end of every program. Finally, the instruction IWAIT(n) delays for n clocks
before executing the next instruction. Usually this is used between read and write data from a
module. The parameter n is bit [15...0] representing the number of clock cycles to wait before
executing the next instruction.

2.4.3 Function Specific Instructions

This type of instruction is used for dedicated MPEG functionality instructions. Such as the
ISET_MV instruction, which is used for setting the motion vector value during the testing of
the Motion Compensation operation in MPEG-4 processing.

The ISET_MOD(module_no) instruction is used to select an active module. We have assigned
a specific module number to each MPU. This instruction must be executed before reading data
for each module.

Trio Adiono, et al.

98

3. System Simulation
In order to verify the embedded IP design via simulations, we have constructed the system

using Synopsys design ware IP as shown in Figure 5. In this configuration, the host system is
replaced with Synopsys Serial IP for verification. Using this IP one can perform data
transmission and receive via the SoC JTAG interface. Therefore, this system will replace the
host PC and diagnostic tools (fig. 1). Programming features provided by IP Verification, one
can transfer generated test vectors directly, expect data and program memory data into this
system. Therefore, the previous system can be simulated using this system.
In order to reduce data transfer time and to simplify the simulations, the test patterns are loaded
into the FSM by using the memory model design ware from Synopsys. With these memory
model features, one can load the test patterns in short time and perform comparisons with the
processing result.

4. Diagnostic Tools

Diagnostic tools have several functions in the verification process, which are test pattern
generation, SoC processing control, processing simulation and data comparison.

4.1 Test Pattern Generation

Depending on the core that is going to be tested, the diagnostic tool can provide the test
pattern data in original image/bit-stream or a result of certain processing simulation. As
example to verify the IDCT function, the diagnostic tool must perform the DCT function to
generate DCT coefficient data as test pattern. Therefore, all processing inside the SoC system
must be implemented in the debugging system. One must also consider the similarity of
processing between hardware and software simulation. Especially in the case for processing
such as the DCT that may be giving different results depend on the different ways of
computation.

Beside the test vectors, the diagnostic tools also generate expected result data. This can be
accomplished by simulating the input data with the simulation program inside the diagnostic
tools.

Test Pattern

JTAG CUTCore Test
Interface

Test
Program

Expected
Result

FSMProgram
Memory

CUT

Core Test
Processor

RTL Code
Synopsys(R)

Mempro

Synopsys(R)

Verification IP

Synopsys VERA(R)

Description Language

System verification using Synopsys DesignWare.

4.2 SoC Processing Control

Since all testing mechanisms are controlled via register read and write operations, the
management of the testing process can be implemented as interactive application by attaching a

An Infrastructural IP for Interactive MPEG-4

99

register read/write function. As result, one can write or read all the available registers and
memory inside the SoC via the diagnostic tools.

One can also combine several mechanisms as a specific program subroutine with a certain
function. For example, writing memory data actually consists of generating data writing
instruction and generating a block of data. Inside the diagnostic tools, we have generated this
as special function; therefore, the user usually does not recognize each function step.
This program is also equipped with an interactive function, where the program automatically
checks the interrupt register for determining the end of data processing.
The diagnostic tools can also use a standard frame video sequence data as input. Originating
from this data, many other test vectors can be generated. With the instruction mechanism, one
can easily transfer or read blocks of data. One can observe the results either from a text-based
or graphical console (Figures 7 and 8).

4.3 The Software Verification Flow

Verification can be performed using the flow as shown in Fig. 6. At the beginning of
verification, a dedicated testing program is downloaded from the PC to the CTP program
memory. Afterwards, the input of the encoding and decoding process, video sequence or bit-
stream data is downloaded into the diagnostic tools. Depending on the MPU to be tested, the
video sequence or bit-stream data is directly loaded into the FSM or, if the MPU requires pre-
processing, the processing is performed by the simulator inside the diagnostic tools.

In order to select the module to be verified, the module selector register is set according to
the module being tested. After that, the register is set to execute the designated program inside
the program memory. The processing result is stored inside the FSM for uploading to the PC.
At the same time, the diagnostic tools simulate the same processing. The control unit inside the
CTP issues an interrupt after each testing program has been completed. Both simulated and in-
circuit processing results are compared in the PC. The result can also be visually compared
and displayed by the diagnostic tools, as shown in Fig. 8.

Image Sequence/
Bitstream Data

MB Simulation
Download To Frame

Store Memory

Execute Module

Module Select

Store In Frame Store
Memory

Upload To PC

Compare

End

Start

MB Simulation

Wait For Interupt

Load Testing
Program to HW

The verification software flow.

If the bug is found, diagnostics can be performed by applying customized test patterns.
Customization can be done in many ways depending on the tested MPU. For instance for MC
diagnostics, one can input the same pixel value for checking the core functionality.

Trio Adiono, et al.

100

5. Experimental Results
In order to carry out experiments, we have developed an MPEG-4 SoC system, and

performed verification by means of simulation as well as in-circuit. Simulation is carried out
by using the system explained in section 2.3. Additionally, for in-circuit verification, we
implemented an MPEG-4 SoC system using an FPGA as shown in Fig. 9. This system was
built using an ALTERA FPGA chip and several chips for the frame store memory, data
converters and other external interfaces.

The proposed system was developed for checking DCT, IDCT, Quantizer, Inv-Quantizer,
ME, and MC cores. DCT testing is done by applying block image data into the FSM using the
IWR_LINE instruction. The IWAIT instruction is used to wait for completion of the DCT
processing. Afterwards, the processing result data is written into the FSM using the
IWR_COLUMN instruction. The IWR_COLUMN instruction is used instead of IWR_LINE,
due to the orientation change because of this processing. As a result, the DCT verification
code is as follows:

ISET_MODULE(01h) // Select DCT module
ISET_ADD(0;5,1,0;4,2,0) //Set Frame No=0, Macro-block=5,4 and Block

number(1,2)
IRD_LINE(0,0,7;0,0,7) // Read a block of data from FSM
IWAIT(72) // Wait for 72 clocks
ISET_ADD(1;5,1,0;4,2,0) //Set Frame No=1, Macro-block=5,4 and Block

number(1,2)
IWR_LINE(0;5,1,0;4,2,0) // Write transformed data to FSM
ISET_MOD(00h) // Release DCT module
ISTOP // Stop the execution

The above program performs the DCT operation to a block of data in frame 0, macro-block (5,
4) and block number (1, 2). The result of processing is stored in frame 1, macro-block (5, 4)
and block number (1, 2).

Character-based visualization of the verification tool.

An Infrastructural IP for Interactive MPEG-4

101

Almost in a similar way, one can perform the verification for the IDCT, Q and Inv-
Quantization cores. As a result of DCT & Q processing, we can see the reconstructed image as
illustrated in Fig. 10. It shows that the verification process can be done for individual DCT and
IDCT functional verification.

Graphical-based visualization of the verification tool.

In the case of MC testing, one can use any frame image from a sequence. The data is read

in the macro-block by using the same instruction as before, but with different operand for
setting the image size into a macro-block. Afterwards we apply the complete range of MV
values (typically between –15.5 to 15.5 in both x and y direction) using the ISET_MV
instruction. As a result one can see that the macro-block data is shift according to the input
motion vector value.

The ME unit usually has a local memory for internal system cache. For copying the test
pattern into this cache data, the IRD_LINE instruction can also be used. After that, the ME
unit can be started, and the result can be read using the Register Access instruction.

MPEG-4 SoC prototype board using an FPGA from Altera.

Trio Adiono, et al.

102

Experimental result for DCT/IDCT verification; the quantization value is five.

6. Conclusions

An infrastructural IP has been proposed to support cost-efficient debug, and board and
system level functional test. Programmability of the system offers the flexibility of upgrading
and fix bugs. Diagnostic tools on a PC are used to manage test patterns, and allow system
reconfiguration for specific processing core tests. Verification can be done interactively and
executed processing at actual system speed. It solves the problem of requiring large amounts
of test patterns as required by MPEG-4 SoC system verification. The same system
configuration can be easily verified in RTL description and chip level.

References
[1] M. Ohashi., et al. A 27MHz 11.1mW Video Decoder LSI for Mobile Application, IEEE

ISSCC Digest of Technical Papers, February, pp. 366, 2002.
[2] H. Nakayama et al., An MPEG-4 Video LSI with Error-Resilient Codec Core based on a

Fast Motion Estimation Algorithm, IEEE ISSCC Digest of Technical Papers, pp. 368,
February, 2002.

[3] M. Takahashi, et al., A Scalable MPEG-4 Video Codec Architecture for IMT-2000
Multimedia Applications, Proceedings of IEEE ISCAS 2000, Geneva, Switzerland, pp.
188-191, 2000.

[4] http://standards.ieee.org/announcements/pr_ics.html
[5] International Standard, Information technology — Coding of audio-visual objects,

ISO/IEC 14496-2.
[6] Y. Zorian., Guest Editor’s Introduction: What is Infrastructure IP?, IEEE Design & Test

of Computers, 19(3), pp. 5-7, 2002.

An Infrastructural IP for Interactive MPEG-4

