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Abstract: Optimal reactive power dispatch (ORPD) is a way to improve power system
performance. Determination of the optimal value of the control variable can reduce the
objective function to be achieved. The optimization of the two objective functions
simultaneously is called multi-objective ORPD (MORPD). This research has a major
contribution in proposing and utilizing original ideas from new algorithms and new ideas from
the old algorithm to solve more complex variables and challenging ORPD problems. The
ORPD problem is formulated as a nonlinear model with variables consisting of continuous and
discrete. The proposed multi-objective algorithm is time-varying particle optimization
(MOTVPSO), ant lion objective (MOALO), dragonfly algorithm (MODA), grey wolf
optimizer (MOGWO), and multi-objective multi-verse optimization (MOMVO). To measure
the effectiveness of those algorithms, testing is performed on the IEEE 57-bus. The simulation
results show that the MOTVPSO algorithm can contribute more dominantly from the statistical
tests conducted compared to previous studies and all four algorithms in this work to minimize
real power loss. Whereas the MOMVO has an advantage in computational time efficiency.

Keywords: the IEEE 57-bus, multi-objective optimal reactive power dispatch, time-varying
particle swarm optimization, ant lion optimizer, grey wolf optimizer, dragonfly algorithm,
multi-verse optimization.

1. Introduction

An electric power system is required to realize the needs of electricity customers with the
most economical costs, sustainable electricity supply, minimize real power loss, and total
voltage deviation. Achieving those objectives requires setting a variable that affects the
objectives to be achieved. The strategy is called the optimal power flow (OPF) [1]. Early in its
development, the OPF problem was resolved by using the approximate approach [2]. But the
OPF which is subject to constraints was applied in 1962 [3].

Because science related to power systems continues to develop, OPF consists of two parts,
namely the optimization of real power flow and reactive power [4]. Research sub-section
related to optimal reactive power dispatch (ORPD) [4-5] related to reactive power
management. At alternating voltage and current, the phase difference between the two will
cause the reactive power. The reactive power and voltage control are two aspects but are
considered an activity. The control is solved by determining the variables that affect both. The
ORPD aims to provide effective reactive power allocation. The objectives to be achieved in
this work are to minimize real power losses and total voltage deviations. Determining the value
of an appropriate control variable will contribute to minimizing the objective's function. The
control variables referred to in this work are the voltage magnitude of the generator, reactive
power compensators, and ratio tap transformers. None of the variables is permitted to exceed
their abilities. By achieving the minimum objective function and without violating the variable
limits, the security of the power system can be maintained as well as financial losses to the
electricity supply company can be reduced as minimum as possible [6].
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To date, research related to ORPD has been widely carried out and proven successful. All
related research has advantages and disadvantages to get quality solutions and computational
time efficiency. The quality of the solution is largely determined by the complexity of the
ORPD problem being solved. Whereas the computational time efficiency is improved by
simplifying the algorithm and increasing the specifications of the personal computer. Because
the development of an increasingly complex power system requires researchers to continue to
look for effective and efficient methods. Variations of the metaheuristic approaches have
received much attention from researchers to date. The problems that cannot be solved by
traditional methods can be solved using the approach.

In this work, the main contribution is to propose and utilize original ideas from four new
algorithms and new ideas from the old algorithm to solve more complex and challenging
ORPD problems. These multi-objective algorithms are the MOALO [7-8], multi-objective
dragonfly algorithm (MODA) [9], grey wolf optimizer (MOGWO) [10-11], multi-verse
optimization strategy (MOMVO) [12-13], and multi-objective time-varying particle swarm
optimization (MOTVPSO). Incorporating ideas to improve PSO performance such as (i). The
application of fine-tuning for inertia weight which decreases linearly will provide better
accuracy [14], (ii). The application of fine-tuning to the 1st acceleration factor (ci) aims to
improve the exploration process at the beginning of time and decrease at the end of time [15],
and (iii). The application of fine-tuning to the second acceleration factor (c2) aims to decrease
the process of exploitation at the beginning of time and increase at the end of time. These
strategies will produce a diversity of local and global solutions that are tailored to the needs
during the optimization process [15]. However, in this work, the adjustment is done
nonlinearly so that the level of change becomes smoother.

All methods are used to solve ORPD problems with simultaneous multi-objective
optimization by involving complex combinations of variables. To test the effectiveness and
efficiency of the five algorithms tested on the IEEE 57-bus. The approach that has the most
dominant contribution in producing statistical tests is seen as the most superior approach. The
intended statistical test is the best objective value (BOV), the worst objective value (WOV), and
mean objective value (MOV). The same statistical test is done to measure the computational
time efficiency.

2. Related Works

An increasingly developed and complex power system requires researchers to find effective
and efficient methods for solving existing problems. At the beginning of its development, the
problems solving were carried out using traditional methods such as quadratic programming
(QP) [16] and interior-point (IP) [17]. The traditional methods have the advantage of
convergence speed [6]. However, the methods have disadvantages such as the need for
differentiable and continuous objective functions, premature convergence, and tends to be
problematic when handling a very large number of variables.

Currently, meta-heuristic optimization methods get a lot of attention from researchers who
focus on optimization. The methods are inspired by the theory of evolution, physical
phenomena, and swarm. The application of metaheuristic methods such as big-bang and big-
crunch (BB-BC) and firefly optimization (FFO) [18], hybrid harrison hawk optimization based
on differential evolution (HHODE) [19], a modified grasshopper optimization algorithm
(MGOA) [20], an improved harmony search (HS) [21], a novel-efficient evolutionary-based
multi-objective optimization (MOQ) [22], an efficient cuckoo bird-inspired meta-heuristic
algorithm (CBIA) [23], and symbiotic organisms search (SOS) [24] have been done to solve
OPF and economic dispatch (ED) problems. However, the application of meta-heuristic
approaches to solving other sub-research problems such as aging leader and challengers-
particle swarm optimization (ALC-PSO) [6], seeker optimization algorithm (SOA) [25], mean-
variance mapping optimization (MVMO) [26], gravitational search algorithm (GSA) [27], an
intelligent water drop (IWD) [28], e-constraint differential evolutionary (EC-DE) [29],
differential evolutionary (DE) [30], hybrid time-varying PSO and genetic algorithm
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(HTVPSOGA) [31], hybrid PSOGSA [32], a novel improved ant lion optimization (IALO)
[33], constriction factor based PSO (CFPSO) [34], and moth-flame optimization (MFO) [35]
has also been proven successful in solving the ORPD problems. Those successes are done by
adopting operators from other algorithms [6,29], the original idea of the algorithm used [25-28,
30, 34-35] and combining two different algorithms [31-32]. However, these methods have the
disadvantage of solving the problems done only by optimizing the single-objective function
and the control variable model that has continuous characteristics. Solving ORPD problems in
this way is considered inefficient and not complex.

The resolution of more challenging ORPD problems has also been applied to the IEEE 57-
bus. The hybrid artificial bee colony assisted DE (HDE-ABC) [36], hybrid modified imperialist
competitive algorithm and invasive weed optimization (MICA-IWO) [37], improved DE (IDE)
[38], gravitational search algorithm PSO (GSAPSO) [39], gravitational search algorithm-
conditional selection strategies (GSA-CSS) [40], and improved GSA-CSS (IGSA-CSS) [40]
methods have proven successful in solving problems of ORPD complexity. These successes
are done by improving the performance of algorithms such as a combination of two different
algorithms [36-37, 39], the development of operators used [38], and adopting other algorithm
operators [40]. Although the methods have succeeded in solving more complex variable
models (a combination of discrete and continuous), the optimization process is carried out with
the only single-objective function. As a result, the method is considered inefficient to solve
ORPD problems.

The different things are done to solve the ORPD problem by using methods such as the
chaotic bat algorithm (CBA) [41], the hybrid PSO and imperialist competitive algorithms
(PSO-ICA) [42], gaussian bare-bones water cycle algorithm (NGBWCA) [43], multi-objective
ant lion optimization (MOALOQO) [44], and fractional-order Darwinian particle swarm
optimization (FO-DPSO) [45]. The methods have proven their success in improving algorithm
performance by a combination of two different algorithms [42], the utilization of other
operators [43,45], and the original idea of the algorithm used [41,44]. The application of the
methods is considered efficient because the optimization process is carried out with multi-
objective simultaneously. However, all control variables are considered as continuous variables
or non-complex variables.

The ORPD problem which is considered more efficient and more complex. The methods
such as artificial bee colony (ABC) [46], the multi-objective PSO (MOPSO) [47], multi-
objective enhanced PSO (MOEPSO) [47], and modified imperialist competitive algorithm
(MGBICA) [48] have succeeded in solving these problems. The ABC algorithm [46] has
solved the problems but does not consider bank capacitors as discrete variables. Improved the
performance of the MOEPSO algorithm [47] is done by adding a mutation operator that has
been proven successful in solving ORPD problems. Simultaneous multi-objective optimization
and combination of variable types is a complex and challenging problem in the application of
those three methods. Because these three studies have the same optimization models and types
of variables (more complex and challenging ORPD problems), the simulation results in this
work will be compared against the three.

To date, in this study, new metaheuristic algorithms discovered by Mirjalili such as ALO
[7], DA [9], GWO [10], dan MVO [12], and the development of the PSO algorithm (TVPSO)
are proposed and utilized to solve more complex and challenging ORPD problems. To measure
the performance of the original ideas of the four new algorithms and new ideas from the PSO,
all algorithms are tested on the IEEE 57-bus. A new idea from the TVPSO algorithm is the use
of operators that are made adaptively. The adaptive change in operator value will have an
impact on increasing the diversity of solutions based on the needs of the exploration and
exploitation process. Both of these processes are carried out alternately with increasing and
decreasing values. Besides, in this work, the computational time efficiency used from each
algorithm is also investigated.
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3. Mathematical Problem Formulation
A. MORPD Objective Functions

In this paper, two distinct objective functions are simultaneously optimized which are
modeled on equation (1) and (2) without violating the equality and inequality boundaries. The
two intended objective functions are as follows [6]:

A.1. The real power losses: this objective function is to minimize real power losses in the
power system. The optimization stage is carried out without breaking the equality and
inequality constraints. The objective function is expressed as:
Ng
Min Jl(PL) = Z gk( Vr2+ Vsz‘zercos ers) (1)
k=1
where N is the bus number, Py is the real power losses, g is the conductance on the k-channel,
V. is the voltage on the r-th bus, V is the voltage on the s-th bus, 6 is the phase angle between
the r-th and s-th bus.

A.2. The total voltage deviation: this objective function is to minimize the total voltage
deviation across the entire load bus in the power system. The objective function is expressed
as:
Npg
Min L(TVD) =Y. |Veo,r— Veo,™ )
i=1
in which Vpg,: voltage on the load bus, Vpg,™: voltage reference on the load bus. The value is
equal to 1.0 per unit (p.u.).

B. Constraints
B.1. Equality Constraints

The real and reactive power flow balances must be met in the optimization process. This
implies that the amount of power supply from generation must be equal to the amount of power
absorbed by the load (including real power losses). The power balances are modeled in the
equations below.

N
PG,r - PPQ,r: Vrf VS(GrSCOS ers + BrSSin ers) (3)

r=l

Ny
QG,r - QPQ," = Vr Z Vs(Grscos ers - BrsSin ers) (4)

r=l
Where: Pg, is the amount of real power supplied by the generator injected on the r-th bus,
Qg 1s the amount of reactive power supplied by the plant injected on the »-th bus, Ppg , is the
amount of real power absorbed by the load on the 7-th bus, QOpg, is the amount of reactive
power absorbed by the load on the r-th bus, G is the value of channel conductance from the -
th bus to the s-th bus, and B, is the value of the channel susceptance from the r-th bus to the s-
th bus.

B.2. Inequality Constraints
The inequality constraints are stated in equation (5) - (10) with the following explanation:
i. Generator constraints: all voltage magnitudes of the bus generator and reactive power
supply at the generator (including the slack bus) must be within the operational limits.
Modeling of these variables and their limitations is shown below.
VG,ymin < Vel Vo,™, r=1,2,..Ng &)
QG'rmi" < Q06r< Q™™ r=1,2,..,.Ng (6)
where: Ng is the number of generators, Vg, is the magnitude of the generator voltage
injected on the r-th bus, and min/max is the equipment capability value limit.

ii. Transformer constraints: the utility value of the tap ratio on the transformer must meet
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the upper and lower limits. The boundary equation of this variable is stated below.

T < T, < TmX 0 p=1,2,...,Nr @)
where: N7 is the number of transformers and 7’ is the tap ratio of the transformers on the 7-
th bus.

iii. Shunt compensator constraints: the utility value of the reactive power compensator must
meet the upper and lower limits. The boundary equation of this variable is expressed below.
Qc,rmin LQ0er< 0™, r=12,.,N, ®)
where: N, is the number of utilities of the reactive power compensator injected on the i-th
bus and Q. is the reactive power compensator injected on the 7-th bus.

iv. Security constraints: all voltage magnitude values on the load bus must meet the upper
and lower limits. While the distribution of power through the network which may not
exceed the maximum capacity. The boundary equation of these variables is expressed
below.

Vo, M"<Vpo,<Vpo, ™, =1,2,..,.Npg )

S < Sk, r=1,2,...,Ni (10)
where: Npp is the number of load buses, N is the number of channels, Vpg, is the voltage
on the 7-th load bus, and Sy is the power flow on the k-th channel.

3. Optimization Algorithms Description

The algorithm used to solve MORPD problems in this paper is introduced briefly. If the
reader is interested in knowing more details about the algorithm used in this work, you can
look at the original article in the references below.

A. Time-Varying PSO

The PSO algorithm is a population-based algorithm. The algorithm is very simple and has
good robustness in controlling its parameters. The PSO algorithm only applies the concepts of
position and velocity to each population. The utilization of leaders taken from secondary
repositories [49] was also used in this study. The PSO algorithm with velocity and position is
expressed below.

Vi) = w(t) V() + c1.m . [Xpbes,i — X/ (£)] + ca.r2.[repr-xi(F)] (11)

x/(t+1) = vi(t+1) + x/(2) (12)
in which rep;: the value taken from the repository that corresponds to a hypercube, v/(?):
particle velocity, x/(f): the current particle position; x/(#+1): update of particle position; xppes,::
local solution, w: the inertia weight, c12: acceleration factors 1 and 2, | 2: random values.

The time-varying inertia weight PSO (TVIW-PSO) performance has a very significant
influence on parameter changes from linear inertia-weight [50]. In general, the problem of
optimization that uses population, diversity of the population is needed alternately during the
process of exploration and exploitation [51]. With this in mind, the PSO was further developed
using the PSO-time varying acceleration (PSO-TVAC) method. This method aims to make
time exchanges on local and global search [15].

To adopt the TVIW and TVAC strategies, this paper presents a modification of the two
parameters on the PSO called TVPSO. The mathematical model of the three PSO parameters is
expressed below. The flow chart of the first algorithm to solve the MORPD problem can be
seen in Figure 1.

w(t)=wy + [(tmax-t)/tmax]t/tmax(wl—Wz) (13)
c1 = cri+ [(Emax-)/tmax]) ™ (c1 0-C1 1) (14)
€2 = €2+ [(max-)/tmax]) "™ (Ca,0-C2,1) (15)

where: ¢ is current iteration and fmax 1S the maximum number of iterations.
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B. Ant Lion Optimization

The ALO [7] mimics the mechanism of the antlion in hunting and foraging interactions.
The optimization process with this algorithm applies several strategies which are briefly
explained as follows:
The random walk is the movement of ants looking for food in nature. The strategy is used the
ALO algorithm which is formulated below.

X(®) =[0, Cum_sum (2r(t2)-1),...,Cum_sum(2r(tmax)-1)] (16)

where: X(¢) is random walk, cum_sum shows the cumulative amount, and fyax with » =1 if
rand> 0.5 and r = 0 if rand < 0.5.

The next strategies are trapping in antlion’s pits, building traps, and ants sliding toward the
antlion. These strategies are modeled with the following mathematical equations:

t
t_Imax X €

= - 17

¢ 10° x¢ (17)
foae X d'

dt: max 18

10° x ¢ (18)

where: ¢’ is the minimum value of the variable in the ¢-iteration, d' is the maximum value of the
variable in the z-iteration, and w indicates the adaptive and conditional constant formulated
below.

2 if 1> 010 £,
300 > 050 1,

w=4 if 1> 0751, (19)
5 0f > 090 1,
6 if 1> 0951

max

Catching prey is the final stage of hunting for prey. While re-building the pit is done to find
new prey. The final stage of hunting for prey is formulated below. Whereas operator elitism is
used so that the best solution in each phase of optimization can be maintained. The flow chart
of the second algorithm can be seen in Figure 2 to solve the MORPD problem in this work.

Antlion'; = Ant'; if f{Ant";) < flAntlion";) (20)
where: Antlion’; shows the j-th position of the antlion in the t-iteration and Ant’; shows the i-
position of ant in the ¢-iteration.

C. Dragonfly Algorithm

DA algorithm [9] is taken from the uniqueness of dragonfly behavior. Static behavior is
seen when dragonflies gather to find prey. While dynamic behavior is seen when dragonflies
migrate, namely groups and in the same direction with great distances. The uniqueness of these
two behaviors is very relevant to the two-optimization phases, namely the process of
exploration and exploitation. The uniqueness is explained briefly with the following strategies:
The behavior of separation (S;) is the behavior of dragonflies to avoid static collisions in their
environment. The behavior of alignment (4;) is the adjustment of position between dragonflies
in their environment. Whereas the behavior of cohesion (C;) is the tendency of dragonflies
towards the center of mass. To survive, dragonflies must be interested in finding food sources
(F;) and overcome enemy interference from outside (£;). The mathematical model of each
behavior and Levy flight can be seen in full in reference [9].

To ensure convergence during the optimization process, each of these behaviors is applied
to a weighting. The equations of inertia-weight and inertia on the behavior of each dragonfly
are calculated as follows:

w=09-109-02)

; ey

max
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1(0.1-0.0)
to 12

max
where: wy is the weight of dragonfly behavior with the adaptive weight requirements used, for ¢
<0.75 tmax, the weight value of each (except f) is the same as wy. As for ¢ > 0.75¢max, the weight
value (except f) is wa/t. The weight value f for all iterations is twice the random value.

Renewal of the position and movement of the dragonfly uses two vectors namely the
position vector (X) and the step vector (AX). When the optimization process is not found in the
surrounding solutions, the Levy flight operator is used. The mathematical model of the
dragonfly step is shown below.

The position of the dragonfly is updated by using two strategies, namely if the dragonfly
has at least one solution around it, then equation (24). But if not, equation (25) is used.

X=X, +AX,,. (24)
X, =X, +Levy(d)X,. (25)
where Levy shows flights to areas that are not dense and the equation can be seen in references

[9]. The flow chart of the third algorithm to solve the MORPD problem can be seen in Figure
3.

wy =0.1- (22)

D. Grey Wolf Optimizer

The GWO algorithm [10] is taken from the unique behavior of the grey wolf namely
dominant social leadership and hunting techniques. Unique behavior in hunting such as
circling, attacking, and finding prey techniques. The GWO algorithm to solve the optimization
problem that is explained as follows adopts the uniqueness of these behaviors:

Social leadership is social domination as long as the wolves interact. Alpha Wolf (a) is
considered a first-best solution. Beta wolf (5) and delta () are considered the second and third-
best solutions. While the omega wolf (w) is considered as the best solution. In hunting, wolves
with types a, £, and ¢ have more ability to guide other wolves. Whereas omega (w) wolves
only follow orders from the other three wolves. The behavior when circling prey is a technique
carried out by wolves to trap prey. Encircling prey (D) is s the behavior of wolves when they
find prey where the wolves will renew their position X(#+1). This behavior is modeled
mathematically in equations below.

D =|C.X,(1) - X(0) (26)

X(t+1) = X,(t) - A.D 27)
where D is the wolf's circular behavior, 4 and C are coefficient values, X, is the position of
prey, and X is the position of each wolf. Mathematical models of A4 and C are shown below.

A=2ar—a (28)

C=2nr 29)
where: a is a value that decreases linearly from 2 to 0 during iteration and »/r, are random
values in the range 0 and 1.

Hunting is the behavior of grey wolves looking for prey guided by alpha, beta, and delta
wolves. These three best solutions are saved. Other wolves (including omega) are required to
renew their position. The mathematical formula of wolf behavior in circling prey (D, 4 s) and
the position of each best wolf (X12,3) can be seen in reference [10]. While the position updates
of other wolves are mathematically modeled below.

X(t+1) = (X + X2 + X3)/3 (30)

Attack prey (exploitation) is the final stage in hunting until the prey does not move
anymore. To accommodate this strategy, component 4 is made to decrease so that component
A also decreases. Component 4 is in the range of random values [-2a, 2a]. Component C is
made does not decrease linearly. This component helps this algorithm in the exploration
process so that it is not trapped in local optimization. The flow chart of the fourth algorithm to
solve the MORPD problem can be seen in Figure 4.
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E. Multi-verse Optimizer

The MVO algorithm [12] was discovered from the Big Bang theory related to multiverses
that discuss the birth of the universe. In theory, there are three concepts used namely white
holes, black holes, and wormholes. In this algorithm, the white hole is adopted as the first
exploration process. The black hole is adopted as the second exploration process. Whereas
wormholes are adopted as a process of exploitation. Every universe produces inflation. The
higher the inflation value of the universe, the better the fitness value. Inflation is adopted as a
function of objectives that will be minimized or maximized.

The MVO algorithm has the advantage that all solutions can contribute to generating new
solutions. The elitism operator is used to store the best solution obtained by the algorithm
during the optimization process. Whereas the mutation operator is not applied with one
hundred percent random values. This is because where the best solutions are connected. The
relationship between solutions is called a wormhole. This mechanism can improve the
exploitation process of this algorithm. The MVO algorithm formula is shown below.

Xy +TDR x (uby —1Ib;)xry +1b,) if r3 <0.5,r, <WEP
xF =3\ xx ~TDRx(uby —Iby)xry +1by) if r320.5,r, <WEP (31)
xk if r, >WEP

where: x% indicates the k variable in the i-th solution, x; indicates the k-variable in the best
solution, WEP is the probability of the existence of wormholes, TDR is the mileage rate, /by is
the lower boundary of the k-th dimension, uby is the upper limit of the k-dimension, 7, - r4 are
random values. The distribution of », - r4 values can be adjusted to emphasize the convergence
of the exploration process. The formulas of WEP and TDR are shown in equations (32) and
(33). The flow chart of the fifth algorithm can be seen in Figure 5 to solve the MORPD
problem in this work.

WEP,,, —~WEP,., ]

max

t

WEP = WEP,;, +1 x[ (32)

max

1
TDR=1-| -

p
&)

max

(33)

F. Multi-objective Strategy and Handling Constraints
Several strategies are used to solve multi-objective optimization problems simultaneously

such as dominant and non-dominant Pareto. Pareto dominance [52] is a comparison of two

solutions in which all objective function objective values are better when compared to other
solutions. Whereas non-dominated [53] is a comparison of two solutions where none
dominates. In other words, each solution only has one of the better objective function values.

For the management of both solutions, an external repository [54] is used which consists of

two parts:

a. An archived controller functions to determine the solution to be added and removed to/from
the archive. The mechanism is based on the criteria for solutions that do not dominate each
other.

b. Grid aims to produce a well-distributed Pareto front. The process of associating a new
solution and removing an old solution is based on the probability value of the solution
density. The mathematical formula of these mechanisms is shown below.

Pi=c/N( (34)

Pi=Nyc (35)
where c is a constant number that must be more than 1 and »; is the number of solutions around
the i-th solution.
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Figure 1. Flowchart of MOTVPSO algorithm
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Get solutions that don't dominate with one
another solutions (non-dominated
Save the non-dominated solution in the repository with
multi-objective F; values on the x-axis, £ on the y-axis,

Use a roulette wheel then
delete one solution in a
crowded area with the

technique of deleting archives

What is the currer
archive number>
Archieve_max?

No
Update existing solutions archived
in repositories with multi-objective
F71 values on the x-axis, [ is axis v

5 the fitness value of an
better than antlions?

[ Update the position of antlion = ant

No

Print the archive in the repository
with the values of the objective
function and population position

Figure 2. Flowchart of MOALO algorithm
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SYNCITonize The main script algoritm witlt e vatpower application
which contains power system input data such as bus data, generator
dat: i at: i Lmjts, ¢ smission line data

Determine the initial parameters of the MODA algorithm such as maximum number of
iterations (fmyy). the number of search dragonfly (), the number of dimensions of the control
variable (). the number of repositories (Archive max)

[ Generate initial values of step and position of each dragonfly |

Setiter () =0

Fun the power fTow with Newton Raphson's method
using Matpower to calculate the objective function

e
[ Update the food source (X"} and enemy (X7) |

2
I Update w, s, a, ¢, f. and ¢ I

| Calculate 5, A, C, Fand £
L2

Count the number of neighbors of each dragonfly

pdate position and step
values, which are step *
Le'vy

5 the current number
of neighbors = 17

[ If the solution value |
exceeds the upper limit
then set it to the max value
and if it passes the lower

Calculate the value of the
r objective function

simultaneously

Get solutions that dont dominate with one |
another solulions‘r(non-dominalcd]

Save the non-dominated solution in the repository with
multi-objective /1 values on the x-axis, F; on the y-axis,

What is the curren
archive number=
Archieve_max?

l No
Update existing solutions archived in
repositories with multi-objective /)
values on the x-axis, 7 is axis v

Delete one solution in a
crowded area with the
technique of deleting archives

‘Are dragonfly's current
fitness values better than their
previous fitness values?

T

Yes
Print the archive in the repository with the values of
the objective funetion and positions of dragonfly

End
Figure 3. Flowchart of MODA algorithm
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which contains power system input data such as bus data, generator data,

/ Synchronize the main script algorithm with the Matpower application
load data. equipment limits, and transmission line data.

Determine the initial parameters of the MOGWO algorithm such as maximum
number of iterations (/. ), the number of search greywolf (), the number of
dimensions of the control variable (), the number of repositories {Archive max)

[ Generate the initial position value of each greywolf |

[ Generate initial values of a, 4, and C |

2
Run the power TTow with INewfon Raphson's method
using Matpower to calculate the objective function
Get solutions that don't dominate with one
another solutions (non-dominated)

‘ Determine the respeciive positions of
alpha, beta and delta wolves

Set iter (=10

|L.'pdatc the position of each _grcywolfl
¥

|Update the values of a, 4, and C|

If the solution value exceeds the

upper limit then set it to the max

value and if it passes the lower
limit then set it to min

| Calculate the value of the objective l
function simultaneously
Get solutions that don't dominate with one
another solutions (non-dominated)

Are there values thal
break their limits?

Save the non-dominated solution n the repository with

multi-objective £ val n the is, 3 on tl

€lete one solution in
a crowded area with | y.q
the technique of

What is the current archive
number= Archieve_max?

No
Update existing solutions archived in
» repositories with multi-objective F values
on the x-axis, 5 is axis y

Are the current fitness values
of u, } and & wolves better than
previous fitness values?

| Update the position of each greywolf |

No

Eprax

Yes
Print the archive in the repository with the
values of the objective function and
positions of greywolf

End
Figure 4. Flowchart of MOGWO algorithm
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tart

Synchronize the main script algorithm with the Matpower application
which contains power system input data such as bus data, generator

data, load data, equipment limits, and transmission line data
¥

Determine the initial parameters of the MOMVYO algorithm such as maximum number of iterations
(fmae)» the number of search universe (&), the number of dimensions of the control variable (d), the
number of repositories (Archive max)

WEP i, and WEP ..

[ Generate the initial position value of each universe |

Sei tter (1) =0

Update the value of the WEP and TDR coefficients |

¥
Run the power flow with Newton Raphson's method using
Matpower to calculate the objective function (inflation rate)

Get solutions that don't dominate with one
another solutions (non-dominated)

¥
[ Choose the best universe |

| Normalization of all inflation rates (N/f) |

| Sorting universe based on inflation rate |

> P>

- . - No Ui/} = Best_universe(j) -
White_hole_index = Roullete wheel selection (-NI) TDR(ub(f) — Ib()))rs ~ Ib())

UiBlack_hole_index, j) = SU(White_hole_index, J) cs
[ UGj) = Best_universe(j) ~ TDR(ub(j) — Ib())rs ~ Ib(j)) |

[Tthe solufion value exceeds
the upper limit then set it to the
max value and if it passes the
lower limit then set it to min

Calculate the value of the objective
function simultaneously

What is the
current archive number=
{rehieve max?

Delete one solution in a Yes
crowded area with the
technique of deleting archives

Update existing solutions archived in
repositories with multi-objective £ values on
the x-axis, £ is axis y

Print the archive in the repository
with the values of the objective
function and positions of universe

End
Figure 5. Flowchart of MOMVO algorithm
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4. Simulation Results and Discussions

In this work, proposed algorithms are tested on the IEEE 57-bus [47]. A brief description
regarding generator data, load data, transmission line data can be seen in Table 1, and the
complete data can be seen in the Matpower application from reference [55]. The IEEE 57-bus
system consists of 57 buses of which 7 are bus generators and 50 are load buses. Bus 1 is a
slack bus while buses 2, 3, 6, 8, 9, and bus 12 are PV buses. The system has 80 transmission
lines, 17 tap transformers, and 3 capacitor banks. 27 control variables are used in the case. 10
control variables consist of 7 control variables which are considered as continuous variables,
namely the voltage magnitude on the bus generator and 17 ratio tap transformers (at lines 4-18,
4-18, 21-20, 24-25, 24-25, 24-26, 7-29, 34-32, 11-41, 15-45, 14-46, 10-51, 13-49, 11-43, 40-
56, 39-57 and 9-55), and 3 capacitor banks (at buses 18, 25 and 53) considered a discrete
variable.

The voltage magnitude limit on the generator bus and the tap transformers used are 0.9 - 1.1
per unit (p.u.). The step applied to the three-tap transformers is 0.02 p.u. The voltage
magnitude limit on all load buses is 0.94 - 1.06 p.u. The limit of the reactive power
compensator injected on bus 18 is 0.0 - 0.2 p.u. The reactive power compensator injected on
buses 25 and 53 is 0.0 - 0.18 p.u. Each of the variables has a step of 0.02 p.u. Limitation and
step data of variables can be seen in Table 2. The total loading is 1250.8 MW and 336.4
MVAr at 100 MVA base. Figure 6 shows a single-line diagram on the IEEE 57-bus. The
parameters of the five algorithms can be read in Table 3.

Table 1. Description of Test Power System [47]

System data Amount
Buses. Np 57
Generators. Ng 7
Transformer. Nt 17
Shunts. N¢ 3
Branches. Ng 80
Control variables 27
Discrete variables 20
Active power demands. MW 1250.8
Reactive power demands. MVar 336.4
Table 2. The Upper and Lower Limits of Variables [47].
.. Limits (p.u.)
Descriptions Lower Upper Steps (p.u.)
Magnitude voltage generator, Va.i 0.90 1.10 -
Tap transformer, 7 0.90 1.10 0.02
Shunt compensator, Oc,1s 0.00 0.20 0.02
Shunt compensator, Q25 and Qc s3 0.00 0.18 0.02
Table 3. Parameter Settings of Algorithms.
Parameters of algorithm Symbols Values
Maximum number of iterations and population size (-9* tma/N 300
Number of repositories!>" Archivema 100
Maximum and minimum values of the acceleration factor!” c 1.5&0.3
Maximum and minimum values of the inertia weight! w 0.9&0.4
Grid inflation parameter'- Alpha 0.9
Leader selection pressure parameter'> Beta 4
Extra (to be deleted) repository member selection pressure! Gamma 2
Number of grids per each dimension'- nGrid 10
Maximum and minimum of wormhole existence probability’ WEPmax/min 1.5/0.3
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*1-5 = Algoritm number

Figure 6. The single-line diagram of the IEEE 57-bus [37].

A. Quality of Solutions
A.1. Minimization of The Real Power Losses

The five algorithms are applied to minimize real power loss with simultaneous multi-
objective optimization. Figure 7 — Figure 11 show the process of finding an optimal solution of
five trials for each approach used. Each approach will produce the best BOV value. The best
BOV values obtained from each of these approaches are then compared. From the simulation
results, each of the MOTVPSO, MOALO, MODA, MOGWO, and MOMVO approach
produces a BOV of 24.7106 MW, 24.9910 MW, 24.9108 MW, 25.0147 MW, and 25.0732
MW. The values produced by each MOEPSO [47], MGBICA [48], MOTVPSO, MODA,
MOGWO, and MOMVO approach are 0.2744 MW (0.99 %), 2.7009 MW (9.79 %), 2.8766
MW (10.43%), 2.5962 MW (9.41%), 2.6764 MW (9.7%), 2.5725 MW (9.32 %), and 2.514
MW (9.11 %) lower than those of MOPSO approach [47]. The values of the control variables
and BOV produced by these approaches can be seen in Table 4.
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A.2 Minimization of The Total Voltage Deviation

The five algorithms are also applied to minimize the total voltage deviation on all load
buses with simultaneous multi-objective optimization. Figure 7 — Figure 11 show the process
of finding an optimal solution of five trials for each approach used. The simulation results
obtained from those five approaches based on the minimum BOV sequence are MOTVPSO,
MOALO, MODA, MOGWO, and MOMVO, respectively 1.9524 p.u., 1.9755 p.u., 1.9600 p.u.,
1.9715 p.u., and 1.9681 p.u. The values of TVD produced by each of the MOEPSO, MOPSO,
MGBICA, MOTVPSO, MODA, MOGWO, and MOMVO approach are 1.1295 p.u. (57.18%)
[47], 1.0354 p.u. (52.41%) [47], 1.2009 p.u. (60.79 %), 0.0231 p.u. (1.17 %), 0.0155 p.u. (0.78
%), 0.0040 p.u. (0.2 %), 0.0074 p.u. (0.37 %), lower than those of the MOALO approach. The
complete results of the optimal value of the control variables for each algorithm can be seen in
Table 5.
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Table 4. Comparison of Simulation Results for The IEEE 57-bus with Real Power Losses
Minimization Objective.

Variables Algorithms
(p-u.) MOEPSO [47] MOPSO [47] MGBICA [48] MOTVPSO
Vi 0.931438 1.100000 1.0600 1.0923
Ve 1.100000 1.100000 1.0492 1.0845
Vas 0.900000 1.100000 1.0388 1.0683
Vs 0.958431 1.100000 1.0353 1.0463
Vas 0.900000 0.900000 1.0558 1.0692
Véo 1.100000 0.911538 1.0212 1.0511
Voi 0.900000 0.900000 1.0295 1.0647
Ty 1.10 1.10 0.95 1.10
Ty 0.90 0.90 1.00 1.10
To10 1.02 1.04 1.01 1.02
Taas 0.90 1.10 - 0.98
Ta4s 0.98 1.10 - 1.04
Toas 1.02 1.10 1.02 0.98
T7.29 0.96 0.98 0.99 1.06
T34 0.90 0.90 0.93 1.06
Tiian 0.90 0.90 0.91 1.02
Tis.as 0.94 0.94 0.97 0.92
Ti4as 0.92 0.92 0.96 0.94
Tiosi 0.94 0.94 0.96 1.10
Ti349 0.90 0.90 0.92 0.94
Tiias 0.94 0.96 0.95 0.96
T4o-56 1.10 1.10 1.03 1.06
Ts9.57 0.96 0.98 0.98 1.10
To.s5 0.96 0.96 0.99 1.02
QOc1s 0.10 0.00 0.04 0.20
Qers 0.00 0.18 0.06 0.04
Ocs 0.08 0.00 0.05 0.10
P, MW 27.31280 27.58720 24.8863 24.7106
APL % 0.99 - 9.79 10.43
TVD, p.u. 1.072430 1.313360 1.0283 2.3618
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Table 4. Comparison of Simulation Results for The IEEE 57-bus with Real Power Losses

Minimization Objective (Continued).

Variables Algorithms
(pu.) MOALO MODA MOGWO MOMVO
Ve 1.0968 1.0925 1.0950 1.0933
Voo 1.0943 1.0969 1.0835 1.0828
Vs 1.0905 1.0832 1.0685 1.0747
Ve 1.0960 1.0458 1.0498 1.0901
Vs 1.0689 1.0932 1.0815 1.0784
Vo 1.0826 1.0733 1.0640 1.0867
Veiz 1.0793 1.0881 1.0376 1.0912
T8 0.98 1.06 0.92 1.06
T8 0.94 1.02 0.98 1.06
To120 1.02 1.04 1.04 1.04
To4.25 0.98 0.92 1.02 0.96
To4.25 1.04 1.00 0.98 1.10
Th4-26 1.08 0.92 0.96 0.92
T7.29 0.96 0.96 0.98 1.02
Ts432 1.06 0.94 1.10 0.92
T4 1.08 1.00 1.04 1.06
Tis.45 1.08 1.06 0.98 1.04
Th4.46 0.92 1.06 1.06 0.96
Tho-51 1.04 1.04 1.00 0.98
T13.49 1.02 1.00 0.94 1.02
T 1.04 0.98 1.04 0.92
T4o-56 1.10 1.06 1.02 1.08
T39.57 1.00 1.00 1.10 1.00
To.s5 1.06 1.02 1.08 0.92
Ocis 0.08 0.18 0.18 0.02
Qs 0.12 0.04 0.04 0.16
Ocs3 0.04 0.06 0.12 0.12
P, MW 24.9910 249108 25.0147 25.0732
APr, % 9.41 9.7 9.32 9.11
TVD, p.u. 2.0133 2.0553 2.3508 2.0290
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Table 5. Comparison of Simulation Results for The IEEE 57-bus with Total Voltage Deviation

Minimization Objective.

Variables Algorithms
(p.u.) MOEPSO [47] | MOPSO[47] | MGBICA [48] | MOTVPSO
Ve 0.9055 1.0479 1.0555 1.0665
Ve 1.1000 1.1000 1.0339 1.0001
Va3 0.9000 1.1000 1.0086 1.0992
Vs 0.9061 0.9797 1.0067 1.0707
Vs 0.9000 0.9882 1.0462 1.0830
Vo 1.1000 0.9000 1.0067 1.0999
Veiz 0.9000 1.1000 1.0059 1.0824
Ty1s 1.10 1.10 0.93 0.98
T8 0.90 0.90 1.01 0.94
T2120 0.98 0.98 0.98 0.96
Tra25 0.90 1.10 - 0.96
Tr425 1.10 1.10 - 0.98
T24.26 1.02 1.10 1.07 1.04
T7.29 0.96 0.96 0.96 1.02
T34.32 0.90 0.90 0.91 0.94
Th1a1 0.90 0.90 0.90 1.02
T'5.45 0.94 0.94 0.95 0.94
T'14.46 0.92 0.98 0.95 0.92
T1051 0.98 0.98 0.98 1.04
T'13.49 0.90 0.90 0.94 0.92
Tia3 0.92 0.96 0.97 0.92
T4o-56 1.10 1.10 1.04 0.92
T39.57 0.90 0.90 0.93 1.02
To.s5 0.96 0.94 0.98 0.96
Oeis 0.04 0.00 0.03 0.18
Oc2s 0.00 0.18 0.06 0.14
Ocs3 0.10 0.00 0.03 0.08
TVD. p.u. 0.845954 0.94013 0.77461 1.9524
% ATVD 57.18 52.41 60.79 1.17
Pr. MW 27.7258 28.3395 26.4618 36.1927
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Table 5. Comparison of Simulation Results for The IEEE 57-bus with Total Voltage Deviation
Minimization Objective (Continued).

Variables Algorithms
(p-u) MOALO MODA MOGWO MOMVO
Vol 1.0758 1.0716 1.0758 1.0899
Ve 0.9007 1.0893 1.0965 0.9633
Vo3 1.1000 1.0857 1.0899 1.0996
Vas 1.0359 1.0446 1.0349 1.0401
Vs 1.0819 1.0985 1.0964 1.0979
Voo 1.0963 1.0948 1.0835 1.0968
Vo 1.0873 1.0950 1.0917 1.0785
Tus 1.00 0.94 1.02 1.08
Tis 1.08 1.02 0.98 1.10
Th120 1.02 0.94 0.98 1.08
Thans 0.92 0.92 1.04 0.94
Thas 0.96 1.00 0.94 0.98
Thae 1.02 1.10 1.04 0.92
To20 0.96 1.00 0.96 0.92
Ty 0.92 1.00 1.08 1.00
a 1.00 1.10 1.00 0.98
Tis.as 1.10 1.06 0.98 1.04
T 1.04 0.96 1.04 1.10
Tio.s1 1.04 0.92 1.04 1.00
T340 1.06 0.98 0.98 1.08
T3 0.98 1.08 0.96 0.98
Tho-s6 1.04 0.96 0.94 1.00
Tho.57 1.02 1.00 1.08 1.00
To.s5 1.04 1.00 0.98 0.96
Oeig 0.02 0.14 0.14 0.16
s 0.18 0.16 0.10 0.04
Ocs3 0.08 0.14 0.08 0.16
TVD, p.u. 1.9755 1.9600 1.9715 1.9681
ATVD, % - 0.78 0.20 0.37
P, MW 77.4787 26.7349 26.9600 51.5468

A.3 Statistical Tests

The MOTVPSO, MOALO, MODA, MOGWO, and MOMVO approaches are carried out
for five trials on the power system mentioned earlier with aiming to minimize each P, and
TVD. The comparison of the process of finding a solution to minimize P, and 7VD on the
IEEE 57-bus is shown in Figure 12 and Figure 13. The results of the statistical tests of each
approach for the IEEE 57-bus are shown in Table 6.

The optimization stage in minimizing P; on the IEEE 57-bus, Of 5 trials conducted in each
approach, the MOTVPSO approach has the advantages of producing BOV, WOV, and MOV
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values compared to the other four approaches. The BOV, WOV, and MOV values for the

MOTVPSO approach are respectively 24.7106 MW, 25.4222 MW, and 25.1332 MW. The

optimization stage minimizes 7VD on the IEEE 57-bus, the algorithm used in previous studies

of MOEPSO and MOPSO is superior in producing BOV. However, the two algorithms do not
present WOV and MOV values. So for the comparison of WOV and MOV conducted fellow
approaches proposed in this work. The MOTVPSO approach has the advantage of producing

MOV values of 1.9743 p.u. While the MOMVO algorithm is superior in producing WOV

values, namely 1.9915 p.u. From the statistical tests, the ability of each algorithm to reduce the

objective function is shown in Table 7. The table shows that the MOTVPSO approach has the
most dominant contribution when compared to the four other approaches to solve MORPD
problems on the IEEE 57-bus.

Some of the causes of the superiority of the MOTVPSO algorithm can be described
qualitatively as follows:

1. The application of fine-tuning to inertia weight which decreases non-linearly so that
optimal solutions can be produced with better accuracy [14]. Besides this strategy [56] can
accelerate the convergence of PSO algorithms in finding optimal solutions.

2. The application of fine-tuning to the 1st and 2nd acceleration factors influences the
exploration and exploitation process [15].
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Figures 12. The best-obtained Pareto-fronts of MOTVPSO, MOALO, MODA, MOGWO, and
MOMVO to minimize real power loss in the IEEE 57-bus.

Table 6. Detailed statistics based on #» number of trials.

Algorithms BOV wov MoV
P (MW) TVD (p.u.) P (MW) VD (p.u.) P (MW) TVD (p.u.)
MOEPSO 27.3128 0.845954 NR NR NR NR
MOPSO 27.5872 0.940126 NR NR NR NR
MOTVPSO 24.7106 1.9524 25.4222 2.0081 25.1332 1.9743
MOALO 24.9910 1.9755 25.4233 1.9960 25.2729 1.9827
MODA 24.9108 1.9600 25.5996 1.9968 25.2627 1.9751
MOGWO 25.0147 1.9715 25.8032 2.0054 25.5262 1.9897
MOMVO 25.0732 1.9681 25.5084 1.9915 25.3319 1.9773

*NR=not reported
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Figure 13. The best-obtained Pareto-fronts of MOTVPSO, MOALO, MODA, MOGWO, and
MOMVO to minimize the total voltage deviation in the IEEE 57-bus.

Table 7. Comparison of The Number of Contributions in Reducing Objective Functions Based
on Statistical Tests

Algorithms AP; (%) ATVD (%) Nunllber. of

BOV wov | MoV BOV WOV | MOV | contributions
MOEPSO 0.99 NR* NR* 57.18 NR* NR* 1
MOPSO 0.00 NR* NR* 52.41 NR* NR* 0
MOTVPSO 10.43 1.48 1.54 1.17 0.00 0.77 4
MOALO 9.41 1.47 0.99 0.00 0.60 0.35 0
MODA 9.70 0.79 1.03 0.78 0.56 0.73 0
MOGWO 9.32 0.00 0.00 0.2 0.13 0.00 0
MOMVO 9.11 1.14 0.76 0.37 0.83 0.62 1

B. Computational Time

After the previous stages discussing the comparison of the quality of the solutions in each
algorithm, the stage is examined in terms of the computational time used by each algorithm in
solving MORPD problems. The computational time shows the efficiency of the algorithm. The
quality of the solution and the computational time are two matters that are just as important as
the optimization process. At this stage, we analyze the results of the statistical tests on the
computation of time used, namely the best computing time (BCT), the worst computing time
(WCT), STDV, and the mean computing time (MCT).

Table 8 shows the results of statistical tests on the computational time used by each
algorithm to solve MORPD problems on the IEEE 57-bus. In the table, it can be seen that for
five trials conducted by researchers, the MOMVO algorithm has the best computational
efficiency if compared to the other algorithms. MOMVO algorithm produces a BCT value of
1786.535 s, a WCT value of 2071.983 s, and a MCT value of 1919.845 s. Although the
MOMVO algorithm has a computationally efficient time, this algorithm has a weakness in
producing quality solutions. Whereas the MODA algorithm has a weakness in the
computational time used. The MOTVPSO algorithm has a fairly efficient computing time.
Detailed computational time used by each algorithm which can be seen in Table 8.
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Table 8. Comparison of Computational Time Based on Statistical Tests on Each Algorithm in
Finding Optimal Solutions

) Algorithms
Trials MOTVPSO MOALO MODA MOGWO | MOMVO
1 2483.479 1953.299 3779.785 | 2169.813 | 1984.133
2 2533.716 1952.369 3190.585 | 2156.664 | 1952.273
3 2500.900 2314.109 3194.499 | 2161.232 | 1804.299
4 2499.871 1909.604 3639.642 | 2164.531 | 2071.983
5 2506.568 1911.451 3215.298 | 2180.538 | 1786.535
BCT, (s) 2483.479 1909.604 3190.585 | 2156.664 | 1786.535
WCT, (s) 2533.716 2314.109 3779.785 | 2180.538 | 2071.983
S](?)V’ 18.257149 172.33185 | 283.63118 | 9.170628 | 121.91485
MCT, (s) 2504.9068 2008.1664 | 3403.9618 | 2166.5556 | 1919.845

Some of the causes of MOMVO algorithms tend to have highly efficient computing time
are: (i). the local renewal solutions have relatively few processes, and (ii). the process of
finding a solution that filters based on random values and WEP. While some of the causes of
the MODA algorithm tend to be very long are: (i). the algorithm has many operators to
determine the position of a search agent, and (ii). the algorithm provides different weight
values for each operator so it takes time to update their weight values.

5. Conclusions and Future Works

In this work, five algorithms are proposed, namely MOTVPSO, MOALO, MODA,
MOGWO, and MOMVO. All five algorithms are implemented to solve MORPD problems in
the IEEE 57-bus. The problems solved in this work consist of simultaneous multi-objective
optimization, handling constraints, and the characteristics of more complex control variables.
All algorithms have never been used to solve MORPD problems. Based on the simulation
results, the MOTVPSO algorithm has a more dominant contribution to the statistical test when
compared to the four other algorithms and previous research in reducing real power losses.
While reducing total voltage deviation, the MOTVPSO and MOMVO algorithms are superior
based on statistical tests compared to the three algorithms proposed in this work. Whereas the
MOMVO algorithm has an advantage in computational time efficiency. However, the
algorithm has a weakness in producing sub-optimal solutions. In future research to improve the
quality of solutions and reduce computational time, the MOTVPSO method can adopt several
strategies used by the MOMVO algorithm. Besides, to improve model resolution and reduce
uncertainty in the operation of power systems, future research needs to consider such things as
the reactive power capacity of generators based on the capacity curve and the dynamic reactive
power compensator technology.
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