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Abstract: Optimal reactive power dispatch (ORPD) is a way to improve power system 
performance. Determination of the optimal value of the control variable can reduce the 
objective function to be achieved. The optimization of the two objective functions 
simultaneously is called multi-objective ORPD (MORPD). This research has a major 
contribution in proposing and utilizing original ideas from new algorithms and new ideas from 
the old algorithm to solve more complex variables and challenging ORPD problems. The 
ORPD problem is formulated as a nonlinear model with variables consisting of continuous and 
discrete. The proposed multi-objective algorithm is time-varying particle optimization 
(MOTVPSO), ant lion objective (MOALO), dragonfly algorithm (MODA), grey wolf 
optimizer (MOGWO), and multi-objective multi-verse optimization (MOMVO). To measure 
the effectiveness of those algorithms, testing is performed on the IEEE 57-bus. The simulation 
results show that the MOTVPSO algorithm can contribute more dominantly from the statistical 
tests conducted compared to previous studies and all four algorithms in this work to minimize 
real power loss. Whereas the MOMVO has an advantage in computational time efficiency. 

Keywords: the IEEE 57-bus, multi-objective optimal reactive power dispatch, time-varying 
particle swarm optimization, ant lion optimizer, grey wolf optimizer, dragonfly algorithm, 
multi-verse optimization. 

1. Introduction
An electric power system is required to realize the needs of electricity customers with the

most economical costs, sustainable electricity supply, minimize real power loss, and total 
voltage deviation. Achieving those objectives requires setting a variable that affects the 
objectives to be achieved. The strategy is called the optimal power flow (OPF) [1]. Early in its 
development, the OPF problem was resolved by using the approximate approach [2]. But the 
OPF which is subject to constraints was applied in 1962 [3].  
 Because science related to power systems continues to develop, OPF consists of two parts, 
namely the optimization of real power flow and reactive power [4]. Research sub-section 
related to optimal reactive power dispatch (ORPD) [4-5] related to reactive power 
management. At alternating voltage and current, the phase difference between the two will 
cause the reactive power. The reactive power and voltage control are two aspects but are 
considered an activity. The control is solved by determining the variables that affect both. The 
ORPD aims to provide effective reactive power allocation. The objectives to be achieved in 
this work are to minimize real power losses and total voltage deviations. Determining the value 
of an appropriate control variable will contribute to minimizing the objective's function. The 
control variables referred to in this work are the voltage magnitude of the generator, reactive 
power compensators, and ratio tap transformers. None of the variables is permitted to exceed 
their abilities. By achieving the minimum objective function and without violating the variable 
limits, the security of the power system can be maintained as well as financial losses to the 
electricity supply company can be reduced as minimum as possible [6]. 
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 To date, research related to ORPD has been widely carried out and proven successful. All 
related research has advantages and disadvantages to get quality solutions and computational 
time efficiency. The quality of the solution is largely determined by the complexity of the 
ORPD problem being solved. Whereas the computational time efficiency is improved by 
simplifying the algorithm and increasing the specifications of the personal computer. Because 
the development of an increasingly complex power system requires researchers to continue to 
look for effective and efficient methods. Variations of the metaheuristic approaches have 
received much attention from researchers to date. The problems that cannot be solved by 
traditional methods can be solved using the approach. 
 In this work, the main contribution is to propose and utilize original ideas from four new 
algorithms and new ideas from the old algorithm to solve more complex and challenging 
ORPD problems. These multi-objective algorithms are the MOALO [7-8],  multi-objective 
dragonfly algorithm (MODA) [9], grey wolf optimizer (MOGWO) [10-11], multi-verse 
optimization strategy (MOMVO) [12-13], and multi-objective time-varying particle swarm 
optimization (MOTVPSO). Incorporating ideas to improve PSO performance such as (i). The 
application of fine-tuning for inertia weight which decreases linearly will provide better 
accuracy [14], (ii). The application of fine-tuning to the 1st acceleration factor (c1) aims to 
improve the exploration process at the beginning of time and decrease at the end of time [15], 
and (iii). The application of fine-tuning to the second acceleration factor (c2) aims to decrease 
the process of exploitation at the beginning of time and increase at the end of time. These 
strategies will produce a diversity of local and global solutions that are tailored to the needs 
during the optimization process [15]. However, in this work, the adjustment is done 
nonlinearly so that the level of change becomes smoother. 
 All methods are used to solve ORPD problems with simultaneous multi-objective 
optimization by involving complex combinations of variables. To test the effectiveness and 
efficiency of the five algorithms tested on the IEEE 57-bus. The approach that has the most 
dominant contribution in producing statistical tests is seen as the most superior approach. The 
intended statistical test is the best objective value (BOV), the worst objective value (WOV), and 
mean objective value (MOV). The same statistical test is done to measure the computational 
time efficiency. 

2. Related Works
An increasingly developed and complex power system requires researchers to find effective

and efficient methods for solving existing problems. At the beginning of its development, the 
problems solving were carried out using traditional methods such as quadratic programming 
(QP) [16] and interior-point (IP) [17]. The traditional methods have the advantage of 
convergence speed [6]. However, the methods have disadvantages such as the need for 
differentiable and continuous objective functions, premature convergence, and tends to be 
problematic when handling a very large number of variables. 
 Currently, meta-heuristic optimization methods get a lot of attention from researchers who 
focus on optimization. The methods are inspired by the theory of evolution, physical 
phenomena, and swarm. The application of metaheuristic methods such as big-bang and big-
crunch (BB-BC) and firefly optimization (FFO) [18], hybrid harrison hawk optimization based 
on differential evolution (HHODE) [19], a modified grasshopper optimization algorithm 
(MGOA) [20], an improved harmony search (HS) [21], a novel-efficient evolutionary-based 
multi-objective optimization (MOO) [22], an efficient cuckoo bird-inspired meta-heuristic 
algorithm (CBIA) [23], and symbiotic organisms search (SOS) [24] have been done to solve 
OPF and economic dispatch (ED) problems. However, the application of meta-heuristic 
approaches to solving other sub-research problems such as aging leader and challengers-
particle swarm optimization (ALC-PSO) [6], seeker optimization algorithm (SOA) [25], mean-
variance mapping optimization (MVMO) [26], gravitational search algorithm (GSA) [27], an 
intelligent water drop (IWD) [28], e-constraint differential evolutionary (EC-DE) [29], 
differential evolutionary (DE) [30], hybrid time-varying PSO and genetic algorithm 
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(HTVPSOGA) [31], hybrid PSOGSA [32], a novel improved ant lion optimization (IALO) 
[33], constriction factor based PSO (CFPSO) [34], and moth-flame optimization (MFO) [35] 
has also been proven successful in solving the ORPD problems. Those successes are done by 
adopting operators from other algorithms [6,29], the original idea of the algorithm used [25-28, 
30, 34-35] and combining two different algorithms [31-32]. However, these methods have the 
disadvantage of solving the problems done only by optimizing the single-objective function 
and the control variable model that has continuous characteristics. Solving ORPD problems in 
this way is considered inefficient and not complex. 
 The resolution of more challenging ORPD problems has also been applied to the IEEE 57-
bus. The hybrid artificial bee colony assisted DE (HDE-ABC) [36], hybrid modified imperialist 
competitive algorithm and invasive weed optimization (MICA-IWO) [37], improved DE (IDE) 
[38], gravitational search algorithm PSO (GSAPSO) [39], gravitational search algorithm-
conditional selection strategies (GSA-CSS) [40], and improved GSA-CSS (IGSA-CSS) [40] 
methods have proven successful in solving problems of ORPD complexity. These successes 
are done by improving the performance of algorithms such as a combination of two different 
algorithms [36-37, 39], the development of operators used [38], and adopting other algorithm 
operators [40]. Although the methods have succeeded in solving more complex variable 
models (a combination of discrete and continuous), the optimization process is carried out with 
the only single-objective function. As a result, the method is considered inefficient to solve 
ORPD problems. 
 The different things are done to solve the ORPD problem by using methods such as the 
chaotic bat algorithm (CBA) [41], the hybrid PSO and imperialist competitive algorithms 
(PSO-ICA) [42], gaussian bare-bones water cycle algorithm (NGBWCA) [43], multi-objective 
ant lion optimization (MOALO) [44], and fractional-order Darwinian particle swarm 
optimization (FO-DPSO) [45]. The methods have proven their success in improving algorithm 
performance by a combination of two different algorithms [42], the utilization of other 
operators [43,45], and the original idea of the algorithm used [41,44]. The application of the 
methods is considered efficient because the optimization process is carried out with multi-
objective simultaneously. However, all control variables are considered as continuous variables 
or non-complex variables. 
 The ORPD problem which is considered more efficient and more complex. The methods 
such as artificial bee colony (ABC) [46], the multi-objective PSO (MOPSO) [47], multi-
objective enhanced PSO (MOEPSO) [47], and modified imperialist competitive algorithm 
(MGBICA) [48] have succeeded in solving these problems. The ABC algorithm [46] has 
solved the problems but does not consider bank capacitors as discrete variables. Improved the 
performance of the MOEPSO algorithm [47] is done by adding a mutation operator that has 
been proven successful in solving ORPD problems. Simultaneous multi-objective optimization 
and combination of variable types is a complex and challenging problem in the application of 
those three methods. Because these three studies have the same optimization models and types 
of variables (more complex and challenging ORPD problems), the simulation results in this 
work will be compared against the three. 
 To date, in this study, new metaheuristic algorithms discovered by Mirjalili such as ALO 
[7], DA [9], GWO [10], dan MVO [12], and the development of the PSO algorithm (TVPSO) 
are proposed and utilized to solve more complex and challenging ORPD problems. To measure 
the performance of the original ideas of the four new algorithms and new ideas from the PSO, 
all algorithms are tested on the IEEE 57-bus. A new idea from the TVPSO algorithm is the use 
of operators that are made adaptively. The adaptive change in operator value will have an 
impact on increasing the diversity of solutions based on the needs of the exploration and 
exploitation process. Both of these processes are carried out alternately with increasing and 
decreasing values. Besides, in this work, the computational time efficiency used from each 
algorithm is also investigated. 
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3. Mathematical Problem Formulation
A. MORPD Objective Functions

In this paper, two distinct objective functions are simultaneously optimized which are
modeled on equation (1) and (2) without violating the equality and inequality boundaries. The 
two intended objective functions are as follows [6]:  

A.1. The real power losses: this objective function is to minimize real power losses in the
power system. The optimization stage is carried out without breaking the equality and
inequality constraints. The objective function is expressed as:

Min J1(PL) = ∑
=

EN

k 1
gk(Vr

2+Vs
2-2rVscosθrs)   (1) 

where NE is the bus number, PL is the real power losses, gk is the conductance on the k-channel, 
Vr is the voltage on the r-th bus, Vs is the voltage on the s-th bus, θrs is the phase angle between 
the r-th and s-th bus. 

A.2. The total voltage deviation: this objective function is to minimize the total voltage
deviation across the entire load bus in the power system. The objective function is expressed
as:

Min J2(TVD) = ∑
=

PQN

i 1

 |VPQ,r – VPQ,r
ref|           (2) 

in which VPQ,r: voltage on the load bus, VPQ,r
ref: voltage reference on the load bus. The value is 

equal to 1.0 per unit (p.u.).  

B. Constraints
B.1. Equality Constraints

The real and reactive power flow balances must be met in the optimization process. This
implies that the amount of power supply from generation must be equal to the amount of power 
absorbed by the load (including real power losses). The power balances are modeled in the 
equations below. 

PG,r - PPQ,r = Vr ∑
=

BN

r 1
Vs(Grscosθrs + Brssinθrs) (3) 

QG,r - QPQ,r = Vr ∑
=

BN

r 1
Vs(Grscosθrs - Brssinθrs)  (4)  

 Where: PG,r is the amount of real power supplied by the generator injected on the r-th bus, 
QG,r is the amount of reactive power supplied by the plant injected on the r-th bus, PPQ,r is the 
amount of real power absorbed by the load on the r-th bus, QPQ,r is the amount of reactive 
power absorbed by the load on the r-th bus, Grs is the value of channel conductance from the r-
th bus to the s-th bus, and Brs is the value of the channel susceptance from the r-th bus to the s-
th bus. 

B.2. Inequality Constraints
The inequality constraints are stated in equation (5) - (10) with the following explanation:
i. Generator constraints: all voltage magnitudes of the bus generator and reactive power
supply at the generator (including the slack bus) must be within the operational limits.
Modeling of these variables and their limitations is shown below.
VG,r

min ≤ VG,ir≤ VG,r
max, r = 1,2,..,NG          (5) 

QG,r
min ≤ QG,r ≤ QG,r

max, r = 1,2,..,NG        (6) 
where: NG is the number of generators, VG,r is the magnitude of the generator voltage 
injected on the r-th bus, and min/max is the equipment capability value limit. 

ii. Transformer constraints: the utility value of the tap ratio on the transformer must meet
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the upper and lower limits. The boundary equation of this variable is stated below. 
Tr

min ≤ Tr ≤ Tr
max,  r = 1,2,...,NT                                                                                        (7) 

where: NT is the number of transformers and Tr is the tap ratio of the transformers on the r- 
 th bus. 

iii. Shunt compensator constraints: the utility value of the reactive power compensator must
meet the upper and lower limits. The boundary equation of this variable is expressed below.
Qc,r

min ≤ Qc,r ≤ Qc,r
max, r = 1,2,...,Nc                                                                                  (8)

where: Nc is the number of utilities of the reactive power compensator injected on the i-th
bus and Qc,r is the reactive power compensator injected on the r-th bus.

iv. Security constraints: all voltage magnitude values on the load bus must meet the upper
and lower limits. While the distribution of power through the network which may not
exceed the maximum capacity. The boundary equation of these variables is expressed
below.
VPQ,r

min≤VPQ,r≤VPQ,r
max, r=1,2,..,NPQ  (9) 

Sk,r≤ Sk,r
max, r = 1,2,...,Nk    (10)  

where: NPQ is the number of load buses, Nk is the number of channels, VPQ,r is the voltage 
on the r-th load bus, and Sk is the power flow on the k-th channel. 

3. Optimization Algorithms Description
The algorithm used to solve MORPD problems in this paper is introduced briefly. If the

reader is interested in knowing more details about the algorithm used in this work, you can 
look at the original article in the references below. 

A. Time-Varying PSO
The PSO algorithm is a population-based algorithm. The algorithm is very simple and has

good robustness in controlling its parameters. The PSO algorithm only applies the concepts of 
position and velocity to each population. The utilization of leaders taken from secondary 
repositories [49] was also used in this study. The PSO algorithm with velocity and position is 
expressed below. 

vi
j(t+1) = w(t).vi

j(t) + c1.r1.[xpbest,i – xi
j(t)] + c2.r2.[reph-xi

j(t)]  (11) 
xi

j(t+1) = vi
j(t+1) + xi

j(t)  (12)  
in which reph: the value taken from the repository that corresponds to a hypercube, vi

j(t): 
particle velocity, xi

j(t): the current particle position; xi
j(t+1): update of particle position; xpbest,i: 

local solution, w: the inertia weight, c1,2: acceleration factors 1 and 2, r1,2: random values.    
 The time-varying inertia weight PSO (TVIW-PSO) performance has a very significant 
influence on parameter changes from linear inertia-weight [50]. In general, the problem of 
optimization that uses population, diversity of the population is needed alternately during the 
process of exploration and exploitation [51]. With this in mind, the PSO was further developed 
using the PSO-time varying acceleration (PSO-TVAC) method. This method aims to make 
time exchanges on local and global search [15]. 
 To adopt the TVIW and TVAC strategies, this paper presents a modification of the two 
parameters on the PSO called TVPSO. The mathematical model of the three PSO parameters is 
expressed below. The flow chart of the first algorithm to solve the MORPD problem can be 
seen in Figure 1. 

w(t) = w2 + [(tmax-t)/tmax]t/tmax(w1-w2)  (13)  
c1 = c1,i + [(tmax-t)/tmax]t/tmax(c1,f-c1,i)      (14)  

 c2 = c2,i + [(tmax-t)/tmax]t/tmax(c2,f-c2,i)       (15)  
where: t is current iteration and tmax is the maximum number of iterations. 
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B. Ant Lion Optimization
The ALO [7] mimics the mechanism of the antlion in hunting and foraging interactions.

The optimization process with this algorithm applies several strategies which are briefly 
explained as follows: 
The random walk is the movement of ants looking for food in nature. The strategy is used the 
ALO algorithm which is formulated below. 

X(t) =[0, Cum_sum (2r(t2)-1),...,Cum_sum(2r(tmax)-1)]        (16)  
 where: X(t) is random walk, cum_sum shows the cumulative amount, and tmax with r = 1 if 
rand> 0.5 and r = 0 if rand ≤ 0.5. 

The next strategies are trapping in antlion’s pits, building traps, and ants sliding toward the 
antlion. These strategies are modeled with the following mathematical equations: 

t
ct

c
t

t

 10
   max

×
×= ω (17) 

t
dt

d
t

t

  10
  max

×
×= ω (18)

where: ct is the minimum value of the variable in the t-iteration, dt is the maximum value of the 
variable in the t-iteration, and w indicates the adaptive and conditional constant formulated 
below. 











>
>
>
>
>

=

max

max

max

max

max

  950 if6
  900if5
  750 if4
  500if3
  100 if2

t.      t      
t.       t      
t.      t      
t.       t      
t.      t      

ω (19)

Catching prey is the final stage of hunting for prey. While re-building the pit is done to find 
new prey. The final stage of hunting for prey is formulated below. Whereas operator elitism is 
used so that the best solution in each phase of optimization can be maintained. The flow chart 
of the second algorithm can be seen in Figure 2 to solve the MORPD problem in this work. 
 Antliont

j = Antt
i if f(Antt

i) < f(Antliont
j)  (20)        

where: Antliont
j shows the j-th position of the antlion in the t-iteration and Antt

j shows the i-
position of ant in the t-iteration.  

C. Dragonfly Algorithm
DA algorithm [9] is taken from the uniqueness of dragonfly behavior. Static behavior is

seen when dragonflies gather to find prey. While dynamic behavior is seen when dragonflies 
migrate, namely groups and in the same direction with great distances. The uniqueness of these 
two behaviors is very relevant to the two-optimization phases, namely the process of 
exploration and exploitation. The uniqueness is explained briefly with the following strategies: 
The behavior of separation (Si) is the behavior of dragonflies to avoid static collisions in their 
environment. The behavior of alignment (Ai) is the adjustment of position between dragonflies 
in their environment. Whereas the behavior of cohesion (Ci) is the tendency of dragonflies 
towards the center of mass. To survive, dragonflies must be interested in finding food sources 
(Fi) and overcome enemy interference from outside (Ei). The mathematical model of each 
behavior and Levy flight can be seen in full in reference [9]. 
 To ensure convergence during the optimization process, each of these behaviors is applied 
to a weighting. The equations of inertia-weight and inertia on the behavior of each dragonfly 
are calculated as follows: 

max

)2.09.0(9.0
t

tw −
−= . (21) 
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)0.01.0(1.0
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twd
−

−= . (22) 

where: wd is the weight of dragonfly behavior with the adaptive weight requirements used, for t 
<0.75 tmax, the weight value of each (except f) is the same as wd. As for t ≥ 0.75tmax, the weight 
value (except f) is wd/t. The weight value f for all iterations is twice the random value. 
 Renewal of the position and movement of the dragonfly uses two vectors namely the 
position vector (X) and the step vector (∆X). When the optimization process is not found in the 
surrounding solutions, the Levy flight operator is used. The mathematical model of the 
dragonfly step is shown below. 
 iiiiiit XweEfFcCaAsSX ∆+++++=∆ = )(1 . (23) 
 The position of the dragonfly is updated by using two strategies, namely if the dragonfly 
has at least one solution around it, then equation (24). But if not, equation (25) is used. 
 11 += ∆+= ttt XXX . (24) 

 ttt XdXX )(Levy 1 +=+ . (25) 
where Levy shows flights to areas that are not dense and the equation can be seen in references 
[9]. The flow chart of the third algorithm to solve the MORPD problem can be seen in Figure 
3. 
 
D. Grey Wolf Optimizer 
 The GWO algorithm [10] is taken from the unique behavior of the grey wolf namely 
dominant social leadership and hunting techniques. Unique behavior in hunting such as 
circling, attacking, and finding prey techniques. The GWO algorithm to solve the optimization 
problem that is explained as follows adopts the uniqueness of these behaviors: 
 Social leadership is social domination as long as the wolves interact. Alpha Wolf (α) is 
considered a first-best solution. Beta wolf (β) and delta (δ) are considered the second and third-
best solutions. While the omega wolf (ω) is considered as the best solution. In hunting, wolves 
with types α, β, and δ have more ability to guide other wolves. Whereas omega (ω) wolves 
only follow orders from the other three wolves. The behavior when circling prey is a technique 
carried out by wolves to trap prey. Encircling prey (D) is s the behavior of wolves when they 
find prey where the wolves will renew their position X(t+1). This behavior is modeled 
mathematically in equations below. 
 D = |C.Xp(t) – X(t)|  (26) 
 X(t+1) = Xp(t) – A.D (27) 
where  D is the wolf's circular behavior, A and C are coefficient values, Xp is the position of 
prey, and X is the position of each wolf.  Mathematical models of  A and C are shown below. 
 A = 2a.r1 – a (28) 
 C = 2.r2 (29) 
where: a is a value that decreases linearly from 2 to 0 during iteration and r1/r2 are random 
values in the range 0 and 1. 
 Hunting is the behavior of grey wolves looking for prey guided by alpha, beta, and delta 
wolves. These three best solutions are saved. Other wolves (including omega) are required to 
renew their position. The mathematical formula of wolf behavior in circling prey (Dα, β, δ) and 
the position of each best wolf (X1,2,3) can be seen in reference [10]. While the position updates 
of other wolves are mathematically modeled below. 
 X(t+1) = (X1 + X2 + X3)/3 (30) 
 Attack prey (exploitation) is the final stage in hunting until the prey does not move 
anymore. To accommodate this strategy, component A is made to decrease so that component 
A also decreases. Component A is in the range of random values [-2a, 2a]. Component C is 
made does not decrease linearly. This component helps this algorithm in the exploration 
process so that it is not trapped in local optimization. The flow chart of the fourth algorithm to 
solve the MORPD problem can be seen in Figure 4. 
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E. Multi-verse Optimizer
The MVO algorithm [12] was discovered from the Big Bang theory related to multiverses

that discuss the birth of the universe. In theory, there are three concepts used namely white 
holes, black holes, and wormholes. In this algorithm, the white hole is adopted as the first 
exploration process. The black hole is adopted as the second exploration process. Whereas 
wormholes are adopted as a process of exploitation. Every universe produces inflation. The 
higher the inflation value of the universe, the better the fitness value. Inflation is adopted as a 
function of objectives that will be minimized or maximized. 
 The MVO algorithm has the advantage that all solutions can contribute to generating new 
solutions. The elitism operator is used to store the best solution obtained by the algorithm 
during the optimization process. Whereas the mutation operator is not applied with one 
hundred percent random values. This is because where the best solutions are connected. The 
relationship between solutions is called a wormhole. This mechanism can improve the 
exploitation process of this algorithm. The MVO algorithm formula is shown below. 

  
  if         

 ,5.0  if  ))(
 ,5.0  if  ))(

2

234

234







≥




<≥+×−×−
<<+×−×+

=
WEPrx

WEPrrlbrlbubTDRx
WEPrrlbrlbubTDRx

x
k
i

kkkk

kkkk
k
i . (31) 

where: xk
i indicates the k variable in the i-th solution, xk indicates the k-variable in the best 

solution, WEP is the probability of the existence of wormholes, TDR is the mileage rate, lbk is 
the lower boundary of the k-th dimension, ubk is the upper limit of the k-dimension, r2 - r4 are 
random values. The distribution of r2 - r4 values can be adjusted to emphasize the convergence 
of the exploration process. The formulas of WEP and TDR are shown in equations (32) and 
(33). The flow chart of the fifth algorithm can be seen in Figure 5 to solve the MORPD 
problem in this work. 








 −
×+=

max

minmax
min t

WEPWEPtWEPWEP . (32) 
















−=

p

p

t

tTDR 1

max

1

1 . (33) 

F. Multi-objective Strategy and Handling Constraints
Several strategies are used to solve multi-objective optimization problems simultaneously

such as dominant and non-dominant Pareto. Pareto dominance [52] is a comparison of two 
solutions in which all objective function objective values are better when compared to other 
solutions. Whereas non-dominated [53] is a comparison of two solutions where none 
dominates. In other words, each solution only has one of the better objective function values. 
For the management of both solutions, an external repository [54] is used which consists of 
two parts: 
a. An archived controller functions to determine the solution to be added and removed to/from

the archive. The mechanism is based on the criteria for solutions that do not dominate each
other.

b. Grid aims to produce a well-distributed Pareto front. The process of associating a new
solution and removing an old solution is based on the probability value of the solution
density. The mathematical formula of these mechanisms is shown below.
Pi = c/Ni( (34)  
Pi = Ni/c (35)  

where c is a constant number that must be more than 1 and Ni is the number of solutions around 
the i-th solution. 
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Figure 1. Flowchart of MOTVPSO algorithm 
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Figure 2. Flowchart of MOALO algorithm 
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Figure 3. Flowchart of MODA algorithm 

Comparison of Algorithms to Solve Multi-objective Optimal Reactive 

529



 
 

 

 
Figure 4. Flowchart of MOGWO algorithm 
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Figure 5. Flowchart of MOMVO algorithm 
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4. Simulation Results and Discussions 
 In this work, proposed algorithms are tested on the IEEE 57-bus [47]. A brief description 
regarding generator data, load data, transmission line data can be seen in Table 1, and the 
complete data can be seen in the Matpower application from reference [55]. The IEEE 57-bus 
system consists of 57 buses of which 7 are bus generators and 50 are load buses. Bus 1 is a 
slack bus while buses 2, 3, 6, 8, 9, and bus 12 are PV buses. The system has 80 transmission 
lines, 17 tap transformers, and 3 capacitor banks. 27 control variables are used in the case. 10 
control variables consist of 7 control variables which are considered as continuous variables, 
namely the voltage magnitude on the bus generator and 17 ratio tap transformers (at lines 4-18, 
4-18, 21-20, 24-25, 24-25, 24-26, 7-29, 34-32, 11-41, 15-45, 14-46, 10-51, 13-49, 11-43, 40-
56, 39-57 and 9-55), and 3 capacitor banks (at buses 18, 25 and 53) considered a discrete 
variable.  
 The voltage magnitude limit on the generator bus and the tap transformers used are 0.9 - 1.1 
per unit (p.u.). The step applied to the three-tap transformers is 0.02 p.u. The voltage 
magnitude limit on all load buses is 0.94 - 1.06 p.u. The limit of the reactive power 
compensator injected on bus 18 is 0.0 - 0.2 p.u. The reactive power compensator injected on 
buses 25 and 53 is 0.0 - 0.18 p.u. Each of the variables has a step of 0.02 p.u. Limitation and 
step data of variables can be seen in Table 2.  The total loading is 1250.8 MW and 336.4 
MVAr at 100 MVA base. Figure 6 shows a single-line diagram on the IEEE 57-bus. The 
parameters of the five algorithms can be read in Table 3. 
 

Table 1. Description of Test Power System [47] 
System data Amount 

Buses. NB 57 
Generators. NG 7 
Transformer. NT 17 
Shunts. NC 3 
Branches. NE 80 
Control variables 27 
Discrete variables 20 
Active power demands. MW 1250.8 
Reactive power demands. MVar 336.4 

 
Table 2. The Upper and Lower Limits of Variables [47]. 

Descriptions Limits (p.u.) Steps (p.u.) Lower Upper 
Magnitude voltage generator, VG,i 0.90 1.10 - 
Tap transformer, Ti 0.90 1.10 0.02 
Shunt compensator, Qc,18 0.00 0.20 0.02 
Shunt compensator, Qc,25 and Qc,53 0.00 0.18 0.02 

 
Table 3. Parameter Settings of Algorithms. 

Parameters of algorithm Symbols Values 
Maximum number of iterations and population size (1-5)* tmax/N 300 
Number of repositories(1-5)* Archivemax 100 
Maximum and minimum values of the acceleration factor1* c 1.5 & 0.3 
Maximum and minimum values of the inertia weight1 w 0.9 & 0.4 
Grid inflation parameter1,5 Alpha 0.9 
Leader selection pressure parameter1,5 Beta 4 
Extra (to be deleted) repository member selection pressure1,5 Gamma 2 
Number of grids per each dimension1,5 nGrid 10 
Maximum and minimum of wormhole existence probability5 WEPmax/min 1.5/0.3 

Sabhan Kanata, et al.

532



 
 

 

           *1-5 = Algoritm number 
 

 
Figure 6. The single-line diagram of the IEEE 57-bus [37]. 

 
A. Quality of Solutions 
A.1. Minimization of The Real Power Losses 
 The five algorithms are applied to minimize real power loss with simultaneous multi-
objective optimization. Figure 7 – Figure 11 show the process of finding an optimal solution of 
five trials for each approach used. Each approach will produce the best BOV value. The best 
BOV values obtained from each of these approaches are then compared. From the simulation 
results, each of the MOTVPSO, MOALO, MODA, MOGWO, and MOMVO approach 
produces a BOV of 24.7106 MW, 24.9910 MW, 24.9108 MW, 25.0147 MW, and 25.0732 
MW. The values produced by each MOEPSO [47], MGBICA [48], MOTVPSO, MODA, 
MOGWO, and MOMVO approach are 0.2744 MW (0.99 %), 2.7009 MW (9.79 %), 2.8766 
MW (10.43%), 2.5962 MW (9.41%), 2.6764 MW (9.7%), 2.5725 MW (9.32 %), and 2.514 
MW (9.11 %) lower than those of MOPSO approach [47]. The values of the control variables 
and BOV produced by these approaches can be seen in Table 4. 
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A.2 Minimization of The Total Voltage Deviation  
 The five algorithms are also applied to minimize the total voltage deviation on all load 
buses with simultaneous multi-objective optimization. Figure 7 – Figure 11 show the process 
of finding an optimal solution of five trials for each approach used. The simulation results 
obtained from those five approaches based on the minimum BOV sequence are MOTVPSO, 
MOALO, MODA, MOGWO, and MOMVO, respectively 1.9524 p.u., 1.9755 p.u., 1.9600 p.u., 
1.9715 p.u., and 1.9681 p.u. The values of TVD produced by each of the MOEPSO, MOPSO, 
MGBICA, MOTVPSO, MODA, MOGWO, and MOMVO approach are 1.1295 p.u. (57.18%) 
[47],  1.0354 p.u. (52.41%) [47], 1.2009 p.u. (60.79 %), 0.0231 p.u. (1.17 %), 0.0155 p.u. (0.78 
%),  0.0040 p.u. (0.2 %),  0.0074 p.u. (0.37 %), lower than those of the MOALO approach. The 
complete results of the optimal value of the control variables for each algorithm can be seen in 
Table 5. 
 

 
Figure 7. The search for optimal solutions with five trials using the MOTVPSO algorithm to 

solve MORPD problems 
 

 
Figure 8. The search for optimal solutions with five trials using the MOALO algorithm to solve 

MORPD problems 
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Figure 9. The search for optimal solutions with five trials using the MODA algorithm to solve 

MORPD problems 
 

 
Figure 10. The search for optimal solutions with five trials using the MOGWO algorithm to 

solve MORPD problems 
 

 
Figure 11. The search for optimal solutions with five trials using the MOMVO algorithm to 

solve MORPD problems 
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Table 4. Comparison of Simulation Results for The IEEE 57-bus with Real Power Losses 
Minimization Objective. 

Variables 
(p.u.) 

Algorithms 

MOEPSO [47] MOPSO [47] MGBICA [48] MOTVPSO 
VG1 0.931438 1.100000 1.0600 1.0923 

VG2 1.100000 1.100000 1.0492 1.0845 

VG3 0.900000 1.100000 1.0388 1.0683 

VG6 0.958431 1.100000 1.0353 1.0463 

VG8 0.900000 0.900000 1.0558 1.0692 

VG9 1.100000 0.911538 1.0212 1.0511 

VG12 0.900000 0.900000 1.0295 1.0647 

T4-18 1.10 1.10 0.95 1.10 

T4-18 0.90 0.90 1.00 1.10 

T21-20 1.02 1.04 1.01 1.02 

T24-25 0.90 1.10 - 0.98 

T24-25 0.98 1.10 - 1.04 

T24-26 1.02 1.10 1.02 0.98 

T7-29 0.96 0.98 0.99 1.06 

T34-32 0.90 0.90 0.93 1.06 

T11-41 0.90 0.90 0.91 1.02 

T15-45 0.94 0.94 0.97 0.92 

T14-46 0.92 0.92 0.96 0.94 

T10-51 0.94 0.94 0.96 1.10 

T13-49 0.90 0.90 0.92 0.94 

T11-43 0.94 0.96 0.95 0.96 

T40-56 1.10 1.10 1.03 1.06 

T39-57 0.96 0.98 0.98 1.10 

T9-55 0.96 0.96 0.99 1.02 

Qc18 0.10 0.00 0.04 0.20 

Qc25 0.00 0.18 0.06 0.04 

Qc53 0.08 0.00 0.05 0.10 

PL, MW 27.31280 27.58720 24.8863 24.7106 

∆ PL, % 0.99 - 9.79 10.43 

TVD, p.u. 1.072430 1.313360 1.0283 2.3618 
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Table 4. Comparison of Simulation Results for The IEEE 57-bus with Real Power Losses 
Minimization Objective (Continued). 

Variables 
(p.u.) 

Algorithms 
MOALO MODA MOGWO MOMVO 

VG1 1.0968 1.0925 1.0950 1.0933 
VG2 1.0943 1.0969 1.0835 1.0828 
VG3 1.0905 1.0832 1.0685 1.0747 
VG6 1.0960 1.0458 1.0498 1.0901 
VG8 1.0689 1.0932 1.0815 1.0784 
VG9 1.0826 1.0733 1.0640 1.0867 
VG12 1.0793 1.0881 1.0376 1.0912 
T4-18 0.98 1.06 0.92 1.06 
T4-18 0.94 1.02 0.98 1.06 
T21-20 1.02 1.04 1.04 1.04 
T24-25 0.98 0.92 1.02 0.96 
T24-25 1.04 1.00 0.98 1.10 
T24-26 1.08 0.92 0.96 0.92 
T7-29 0.96 0.96 0.98 1.02 
T34-32 1.06 0.94 1.10 0.92 
T11-41 1.08 1.00 1.04 1.06 
T15-45 1.08 1.06 0.98 1.04 
T14-46 0.92 1.06 1.06 0.96 
T10-51 1.04 1.04 1.00 0.98 
T13-49 1.02 1.00 0.94 1.02 
T11-43 1.04 0.98 1.04 0.92 
T40-56 1.10 1.06 1.02 1.08 
T39-57 1.00 1.00 1.10 1.00 
T9-55 1.06 1.02 1.08 0.92 
Qc18 0.08 0.18 0.18 0.02 
Qc25 0.12 0.04 0.04 0.16 
Qc53 0.04 0.06 0.12 0.12 

PL, MW 24.9910 24.9108 25.0147 25.0732 
∆PL, % 9.41 9.7 9.32 9.11 

TVD, p.u. 2.0133 2.0553 2.3508 2.0290 
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Table 5. Comparison of Simulation Results for The IEEE 57-bus with Total Voltage Deviation 
Minimization Objective. 

Variables 
(p.u.) 

Algorithms 
MOEPSO [47] MOPSO [47] MGBICA [48] MOTVPSO 

VG1 0.9055 1.0479 1.0555 1.0665 
VG2 1.1000 1.1000 1.0339 1.0001 
VG3 0.9000 1.1000 1.0086 1.0992 
VG6 0.9061 0.9797 1.0067 1.0707 
VG8 0.9000 0.9882 1.0462 1.0830 
VG9 1.1000 0.9000 1.0067 1.0999 
VG12 0.9000 1.1000 1.0059 1.0824 
T4-18 1.10 1.10 0.93 0.98 
T4-18 0.90 0.90 1.01 0.94 
T21-20 0.98 0.98 0.98 0.96 
T24-25 0.90 1.10 - 0.96 
T24-25 1.10 1.10 - 0.98 
T24-26 1.02 1.10 1.07 1.04 
T7-29 0.96 0.96 0.96 1.02 
T34-32 0.90 0.90 0.91 0.94 
T11-41 0.90 0.90 0.90 1.02 
T15-45 0.94 0.94 0.95 0.94 
T14-46 0.92 0.98 0.95 0.92 
T10-51 0.98 0.98 0.98 1.04 
T13-49 0.90 0.90 0.94 0.92 
T11-43 0.92 0.96 0.97 0.92 
T40-56 1.10 1.10 1.04 0.92 
T39-57 0.90 0.90 0.93 1.02 
T9-55 0.96 0.94 0.98 0.96 
Qc18 0.04 0.00 0.03 0.18 
Qc25 0.00 0.18 0.06 0.14 
Qc53 0.10 0.00 0.03 0.08 

TVD. p.u. 0.845954 0.94013 0.77461 1.9524 
% ∆TVD 57.18 52.41 60.79 1.17 
PL. MW 27.7258 28.3395 26.4618 36.1927 
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Table 5. Comparison of Simulation Results for The IEEE 57-bus with Total Voltage Deviation 
Minimization Objective (Continued). 

Variables 
(p.u.) 

Algorithms 

MOALO MODA MOGWO MOMVO 
VG1 1.0758 1.0716 1.0758 1.0899 
VG2 0.9007 1.0893 1.0965 0.9633 
VG3 1.1000 1.0857 1.0899 1.0996 
VG6 1.0359 1.0446 1.0349 1.0401 
VG8 1.0819 1.0985 1.0964 1.0979 
VG9 1.0963 1.0948 1.0835 1.0968 
VG12 1.0873 1.0950 1.0917 1.0785 
T4-18 1.00 0.94 1.02 1.08 

T4-18 1.08 1.02 0.98 1.10 

T21-20 1.02 0.94 0.98 1.08 

T24-25 0.92 0.92 1.04 0.94 

T24-25 0.96 1.00 0.94 0.98 

T24-26 1.02 1.10 1.04 0.92 

T7-29 0.96 1.00 0.96 0.92 

T34-32 0.92 1.00 1.08 1.00 

T11-41 1.00 1.10 1.00 0.98 

T15-45 1.10 1.06 0.98 1.04 

T14-46 1.04 0.96 1.04 1.10 

T10-51 1.04 0.92 1.04 1.00 

T13-49 1.06 0.98 0.98 1.08 

T11-43 0.98 1.08 0.96 0.98 

T40-56 1.04 0.96 0.94 1.00 

T39-57 1.02 1.00 1.08 1.00 

T9-55 1.04 1.00 0.98 0.96 

Qc18 0.02 0.14 0.14 0.16 
Qc25 0.18 0.16 0.10 0.04 
Qc53 0.08 0.14 0.08 0.16 

TVD, p.u. 1.9755 1.9600 1.9715 1.9681 
∆TVD, % - 0.78 0.20 0.37 
PL, MW 77.4787 26.7349 26.9600 51.5468 

 
A.3 Statistical Tests 
 The MOTVPSO, MOALO, MODA, MOGWO, and MOMVO approaches are carried out 
for five trials on the power system mentioned earlier with aiming to minimize each PL and 
TVD. The comparison of the process of finding a solution to minimize PL and TVD on the 
IEEE 57-bus is shown in Figure 12 and Figure 13. The results of the statistical tests of each 
approach for the IEEE 57-bus are shown in Table 6. 
 The optimization stage in minimizing PL on the IEEE 57-bus, Of 5 trials conducted in each 
approach, the MOTVPSO approach has the advantages of producing BOV, WOV, and MOV 

Comparison of Algorithms to Solve Multi-objective Optimal Reactive 

539



 
 

 

values compared to the other four approaches. The BOV, WOV, and MOV values for the 
MOTVPSO approach are respectively 24.7106 MW, 25.4222 MW, and 25.1332 MW. The 
optimization stage minimizes TVD on the IEEE 57-bus, the algorithm used in previous studies 
of MOEPSO and MOPSO is superior in producing BOV. However, the two algorithms do not 
present WOV and MOV values. So for the comparison of WOV and MOV conducted fellow 
approaches proposed in this work. The MOTVPSO approach has the advantage of producing 
MOV values of 1.9743 p.u. While the MOMVO algorithm is superior in producing WOV 
values, namely 1.9915 p.u. From the statistical tests, the ability of each algorithm to reduce the 
objective function is shown in Table 7. The table shows that the MOTVPSO approach has the 
most dominant contribution when compared to the four other approaches to solve MORPD 
problems on the IEEE 57-bus. 
 Some of the causes of the superiority of the MOTVPSO algorithm can be described 
qualitatively as follows: 
1. The application of fine-tuning to inertia weight which decreases non-linearly so that 

optimal solutions can be produced with better accuracy [14]. Besides this strategy [56] can 
accelerate the convergence of PSO algorithms in finding optimal solutions. 

2. The application of fine-tuning to the 1st and 2nd acceleration factors influences the 
exploration and exploitation process [15]. 

 

 
Figures 12. The best-obtained Pareto-fronts of MOTVPSO, MOALO, MODA, MOGWO, and 

MOMVO to minimize real power loss in the IEEE 57-bus. 
 

Table 6. Detailed statistics based on n number of trials. 
Algorithms BOV WOV MOV 

PL (MW) TVD (p.u.) PL (MW) TVD (p.u.) PL (MW) TVD (p.u.) 
MOEPSO 27.3128 0.845954 NR NR NR NR 
MOPSO 27.5872 0.940126 NR NR NR NR 

MOTVPSO 24.7106 1.9524 25.4222 2.0081 25.1332 1.9743 
MOALO 24.9910 1.9755 25.4233 1.9960 25.2729 1.9827 
MODA 24.9108 1.9600 25.5996 1.9968 25.2627 1.9751 

MOGWO 25.0147 1.9715 25.8032 2.0054 25.5262 1.9897 
MOMVO 25.0732 1.9681 25.5084 1.9915 25.3319 1.9773 

*NR=not reported 
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Figure 13. The best-obtained Pareto-fronts of MOTVPSO, MOALO, MODA, MOGWO, and 

MOMVO to minimize the total voltage deviation in the IEEE 57-bus. 
 
Table 7. Comparison of The Number of Contributions in Reducing Objective Functions Based 

on Statistical Tests 

Algorithms ∆PL (%) ∆TVD (%) Number of 
contributions BOV WOV MOV BOV WOV MOV 

MOEPSO 0.99 NR* NR* 57.18 NR* NR* 1 
MOPSO 0.00 NR* NR* 52.41 NR* NR* 0 
MOTVPSO 10.43 1.48 1.54 1.17 0.00 0.77 4 
MOALO 9.41 1.47 0.99 0.00 0.60 0.35 0 
MODA 9.70 0.79 1.03 0.78 0.56 0.73 0 
MOGWO 9.32 0.00 0.00 0.2 0.13 0.00 0 
MOMVO 9.11 1.14 0.76 0.37 0.83 0.62 1 
 
B. Computational Time 
 After the previous stages discussing the comparison of the quality of the solutions in each 
algorithm, the stage is examined in terms of the computational time used by each algorithm in 
solving MORPD problems. The computational time shows the efficiency of the algorithm. The 
quality of the solution and the computational time are two matters that are just as important as 
the optimization process. At this stage, we analyze the results of the statistical tests on the 
computation of time used, namely the best computing time (BCT), the worst computing time 
(WCT), STDV, and the mean computing time (MCT). 
 Table 8 shows the results of statistical tests on the computational time used by each 
algorithm to solve MORPD problems on the IEEE 57-bus. In the table, it can be seen that for 
five trials conducted by researchers, the MOMVO algorithm has the best computational 
efficiency if compared to the other algorithms. MOMVO algorithm produces a BCT value of 
1786.535 s, a WCT value of 2071.983 s, and a MCT value of 1919.845 s. Although the 
MOMVO algorithm has a computationally efficient time, this algorithm has a weakness in 
producing quality solutions. Whereas the MODA algorithm has a weakness in the 
computational time used. The MOTVPSO algorithm has a fairly efficient computing time. 
Detailed computational time used by each algorithm which can be seen in Table 8. 
 
 
 

Comparison of Algorithms to Solve Multi-objective Optimal Reactive 

541



 
 

Table 8. Comparison of Computational Time Based on Statistical Tests on Each Algorithm in 
Finding Optimal Solutions 

Trials 
Algorithms 

MOTVPSO MOALO MODA MOGWO MOMVO 
1 2483.479 1953.299 3779.785 2169.813 1984.133 
2 2533.716 1952.369 3190.585 2156.664 1952.273 
3 2500.900 2314.109 3194.499 2161.232 1804.299 
4 2499.871 1909.604 3639.642 2164.531 2071.983 
5 2506.568 1911.451 3215.298 2180.538 1786.535 

BCT, (s) 2483.479 1909.604 3190.585 2156.664 1786.535 
WCT, (s) 2533.716 2314.109 3779.785 2180.538 2071.983 
STDV, 

(s) 18.257149 172.33185 283.63118 9.170628 121.91485 

MCT, (s) 2504.9068 2008.1664 3403.9618 2166.5556 1919.845 
 
 Some of the causes of MOMVO algorithms tend to have highly efficient computing time 
are: (i). the local renewal solutions have relatively few processes, and (ii). the process of 
finding a solution that filters based on random values and WEP. While some of the causes of 
the MODA algorithm tend to be very long are: (i). the algorithm has many operators to 
determine the position of a search agent, and (ii). the algorithm provides different weight 
values for each operator so it takes time to update their weight values. 
 
5. Conclusions and Future Works 
 In this work, five algorithms are proposed, namely MOTVPSO, MOALO, MODA, 
MOGWO, and MOMVO. All five algorithms are implemented to solve MORPD problems in 
the IEEE 57-bus. The problems solved in this work consist of simultaneous multi-objective 
optimization, handling constraints, and the characteristics of more complex control variables. 
All algorithms have never been used to solve MORPD problems. Based on the simulation 
results, the MOTVPSO algorithm has a more dominant contribution to the statistical test when 
compared to the four other algorithms and previous research in reducing real power losses. 
While reducing total voltage deviation, the MOTVPSO and MOMVO algorithms are superior 
based on statistical tests compared to the three algorithms proposed in this work. Whereas the 
MOMVO algorithm has an advantage in computational time efficiency. However, the 
algorithm has a weakness in producing sub-optimal solutions. In future research to improve the 
quality of solutions and reduce computational time, the MOTVPSO method can adopt several 
strategies used by the MOMVO algorithm. Besides, to improve model resolution and reduce 
uncertainty in the operation of power systems, future research needs to consider such things as 
the reactive power capacity of generators based on the capacity curve and the dynamic reactive 
power compensator technology. 
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