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Abstract: The syllable-based automatic speech recognition (ASR) systems commonly perform 
better than the phoneme-based ones. This paper focuses on developing an Indonesian 
monosyllable-based ASR (MSASR) system using an ASR engine called SPRAAK and 
comparing it to a phoneme-based one. The Mozilla DeepSpeech-based end-to-end ASR (MDS-
E2EASR), one of the state-of-the-art models based on character (similar to the phoneme-based 
model), is also investigated to confirm the result. Besides, a novel Kaituoxu Speech-
Transformer (KST) E2EASR is also examined. Testing on the Indonesian speech corpus of 
5,439 words shows that the proposed MSASR produces much higher word accuracy (76.57%) 
than the monophone-based one (63.36%). Its performance is comparable to the character-based 
MDS-E2EASR, which produces 76.90%, and the character-based KST-E2EASR (78.00%). In 
the future, this monosyllable-based ASR is possible to be improved to the bisyllable-based one 
to give higher word accuracy. Nevertheless, extensive bisyllable acoustic models must be 
handled using an advanced method. 
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1. Introduction
An automatic speech recognition (ASR) system is usually developed using a state model of

triphone, three context-dependent phonemes. Since 2000 many syllable-based ASR systems 
have been developed for English with higher performances than the phoneme-based ones [1], 
[2], [3]. However, they require much more acoustic models, which are commonly implemented 
using Hidden Markov Model (HMM), dynamic time wrapping, or even deep learning. 
 This paper discusses an early effort to develop an Indonesian context-independent 
monosyllable-based ASR using a speech corpus of 44,000 utterances (collected from 400 
speakers that read 110 sentences each) [4], [5]. The developed monosyllable-based ASR is then 
analyzed and compared to the context-independent monophone-based ASR based on their 
word accuracies and error rates. Besides, it is also compared to both deep learning-based 
models: MDS and KST, which are some of the most popular modern E2EASR systems, to 
confirm the performances of the proposed ASR system. 
 Based on the classification method proposed by Dauer in [6], the Indonesian language is 
one of the simple syllabic languages. It has twelve syllable structures (or patterns), as listed in 
Table 1, adapted from [7]. In [8], a study on a vocabulary of 50 k words selected from the 
Indonesian dictionary called KBBI shows that the Indonesian language is dominated by open 
syllables (56.63%), which are structures with a vowel at the end. The rests 43.37% are closed 
syllables (structures with a consonant at the end). The Indonesian has mostly simple CV 
syllables (C = consonant and V = vowel), up to 50.63% [8]. Hence, Indonesian is categorized 
as a simple language, where the syllabic complexity is low. Meanwhile, English is categorized 
as a complex language. It has various both open and closed syllables and much lower CV 
syllables of 35% [6]. These facts indicate that an Indonesian ASR will be simpler to be 
developed than the English ASR. 
 However, the Indonesian has many long words containing 7, 8, even 9 syllables, such as 
’menindaklanjuti’ (to follow up), ’memperjualbelikannya’ (to trade it), ’pertelekomunikasian’ 
(everything related to telecommunication). The study in [8] shows that, on average, any 
Indonesian word has 3.20 syllables.  
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Table 1. Twelve structures of Indonesian syllables 
Number Syllable structure Example 

1 V a.ku
2 CV ba.ca
3 CCV dra.ma
4 CCCV stra.te.gi
5 VC ab.di 
6 CVC cin.ta 
7 VCC eks.tra 
8 CVCC teks.tur 
9 CVCCC korps 

10 CCVC prak.tik 
11 CCVCC kom.pleks 
12 CCCVC struk.tur 

 Thus, it has much more polysyllabic words (up to 98.30%) than the monosyllabic ones 
(only 1.70%). Compared to the Indonesian language, English has lower polysyllabic words 
(80%) and more monosyllabic words (up to 20%) based on the Wordsmyth dictionary [9]. This 
statistic seems to be contradictive to the previous facts, but the long syllables in a speech are 
easy to be recognized using a syllable-based ASR as long as they are categorized as open 
syllables. 
 Another interesting fact is that Indonesian has so many phonotactic rules that not all 
consecutive phonemes are valid to form a word [7]. For instance, a consecutive phonemes /kt/ 
in /struktur/ (structure) should be separated since Indonesian syllables never contain /kt/. These 
phonotactic rules reduce the possibility of a word generating by the sequence of phonemes. 
Based on those facts, the Indonesian ASR is expected to perform better if it is developed using 
a syllable-based approach compared to the phoneme-based one. 
The design of Indonesian syllable-based ASR is explained in section 2. The Indonesian speech 
corpus, syllable-based dictionary, text corpus, and the experimental setup are described in 
section 3. Next, section 4 discusses the performances of both monophone-based ASR and 
monosyllable-based one regarding their word accuracies and error rates. The last section gives 
both conclusion and future work. 

2. Indonesian syllable-based ASR
There are two approaches in developing an ASR system. The first one is a traditional

pipeline model, which is commonly built using the hidden Markov model (HMM). The second 
one is a modern E2EASR, which is generally developed using deep learning (DL). The DL-
based approach is capable of replacing some algorithms and processing steps in the traditional 
model. MDS and KST are two of the most popular modern E2EASR. MDS is commonly 
trained using the character-based technique. It uses the recurrent neural network (RNN) [10], 
which is considered the same as the acoustic models built in HMM-based ASR [11], [12]. 
Whereas, KST is a sequence-to-sequence (S2S) model without recurrence [13]. It can be 
trained more efficiently since it exploits an attention mechanism, which is used to learn the 
positional dependencies. Furthermore, it can be exploited to restore capitalization and 
punctuation in the ASR output to improve readability [14]. In  [15], it is reported to obtain high 
performance for both Latvian and English ASR systems and language understanding. 
 However, since both MDS and KST models need a large speech corpus, they have a 
problem for low-resource languages, such as Indonesian. In the world, there are more than 95% 
of languages are low-resource [16], which are hard to provide a vast annotated corpus of 
speech to be learned by both modern E2EASR systems. There are three solutions to this 
problem. Firstly, data augmentation can be used to generate large amounts of synthetic data 
[17]. Secondly, a transfer learning can be used for similar languages, such as English, German, 
and Dutch, where some layers of convolutional neural networks (CNN) can be entirely or 
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highly transferable [18], [19]. Thirdly, a Map and Relabel (MaR) can also be efficiently used to 
quickly construct an ASR system. For instance, MaR successfully trains a reasonable ASR 
Uyghur system using a small corpus of 500 utterances [20]. Practically, those three solutions 
have some limitations. The data augmentation is commonly used to synthesize various noisy 
utterances, not create new clean ones. Both transfer learning and MaR generally produce high 
performances for some similar languages, not for the different ones with many specificities. 
 Hence, some researchers prefer to develop a traditional pipelined-ASR based on either 
phoneme or syllable. In general, the phoneme-based ASR systems are developed using a 
frame-based technique [3]. In this technique, no automatic segmentation of phonemes is 
needed. An input speech is independently seen as a frame sequence that statistically constant, 
as illustrated in Figure 1. An Indonesian utterance ‘ke bab satu’ (‘go to chapter one’ in 
English) is decomposed into some sequences of frames. The length of a frame is usually 25 
milliseconds (ms) with 10 ms shifting. Each frame is extracted to produce some features, which 
is commonly using Mel-frequency cepstral coefficients (MFCC). Next, the sequences of 
features are recognized using a classifier, e.g., HMM, dynamic time wrapping, or deep 
learning, to get some phonemes. By using a dictionary of phoneme lexicons, the sequence of 
phonemes is concatenated to form some words. Then, the sequences of words are combined to 
generate several possible sentences, for example: ‘kebab satu’ (‘kebab one’) and ‘ke bab satu’ 
(‘go to chapter one’). Finally, a language model (usually a trigram language model) selects the 
best (most probable) sentence as an output: ‘ke bab satu’. 
 In the syllable-based ASR, an input speech is also seen as a frame sequence, but the 
acoustic models are developed in a slightly different way, as illustrated in Figure 2. Each frame 
is extracted to produce some features. Next, the sequences of features are recognized using an 
HMM to get some syllables. By using a dictionary of syllable lexicons, the sequences of 
syllables are concatenated to form some words. Then, the sequences of words are combined to 
generate some possible sentences. Finally, a trigram language model selects the most probable 
sentence. In this research, both models are developed using the same speech and text corpora, 
and their performances are then compared. 

MFCC-based features

Sequence of phonemes

Sequence of Words

Possible sentences

x1x2x3 ... xTxT-1

Speech is seen as a 
sequence of frames

/kebab/ or /ke/ /bab/ /satu/

/kebab satu/ or /ke bab satu/

“ke bab satu”

Language 
Model

Phonemic 
dictionary

Acoustic 
models

The best sentence

/k/ /ǝ/ /ɑ/ /b/ /s/ /ɑ/ /t/ /u//b/

Figure 1. Phoneme-based ASR system 
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MFCC-based features

Sequence of syllables

Sequence of Words

Possible sentences

x1x2x3 ... xTxT-1

Speech is seen as a 
sequence of frames

/kebab/ or /ke/ /bab/ /satu/

/kebab satu/ or /ke bab satu/

“ke bab satu”

Language 
Model

Syllabic 
dictionary

Acoustic 
models

The best sentence

/kǝ/ /bɑb/ /sa/ /tu/

Figure 2. Syllable-based ASR system 

3. Experimental Setup
Both acoustic and language models used in this research are the Hidden Markov Model

(HMM)-based state model and the trigram language model. Those models require large speech 
and text corpus for the training process. A reading-speech corpus of 400 speakers with four 
major dialects [4] is used in this research. This corpus will be trained to develop HMM-based 
acoustic models. A text corpus of 5 k sentences [5] will be used to develop a trigram language 
model. 

A. Syllable Lexicons
A dictionary of syllable lexicons is needed to generate a set of syllable-based acoustic

models. It can be developed in two stages. First, each word in the dictionary is converted into a 
sequence of phonemes using a grapheme-to-phoneme (G2P) conversion [21], where the 
monophone pronunciation accuracy is 99.07%. Second, the phoneme sequence is syllabified 
using the Indonesian syllabification system [8], where the accuracy of syllable pronunciation is 
99.36%. In this research, a validation is manually performed to update the few incorrect 
syllable lexicons. Some examples of syllable lexicons are listed in Table 2. 

Table 2. Indonesian dictionary of syllable lexicons 
Word Syllable lexicons 

administrasi ad mi nis tra si 
besok be sok 
favorit fa fo rit 

masalah ma sa lah 
obat o bat

syarief sya rief
telekomunikasi te le ko mu ni ka si 

B. Context-Independent Unit for Syllable
The context-independent unit will list all possible syllables that represent all words in the

speech corpus as well as the lexicon model. The 5,439 unique words from 7,150 utterances in 
the corpus will be modeled into 2,840 monosyllables. 

C. ASR Models
In this research, an ASR engine called speech processing, recognition, and automatic

annotation kit (SPRAAK) is used to generate both monophone-based and monosyllable-based 

Danny Henry Galatang, et al.

723



acoustic models. In developing the acoustic models, the HMM parameters are mostly set to the 
default values, as illustrated in Table 3. The SRILM toolkit is exploited to develop a word-
based trigram language model, where it is built with a back-off technique for a text corpus of 5 
k sentences. Both acoustic and language models are then used for training as well as testing. 
 

Table 3. Parameters of HMM 
Word Syllable lexicons 

HMM_VNUM 7 
DIM1 7650 
DIM2 1 
NUNIT 34 
NSTATE 102 
TOPOLOGY LEFT_TO_RIGHT 
TPDIM 2 
DENSTYPE SC_HMM 
NMIX 1 
TRANS_SCALE LOGARITHMIC 
WEIGHT_SCALE LOGARITHMIC 
TOTAL_MIXDIM 7140 
EXTENDED PARAMSET 
NMVG 285 
OVLEN 39 
REDUCED_SC_HMM YES 

 
 Meanwhile, the parameters of the MDS-E2EASR is also mostly set to the default 
parameters, as illustrated in Table 4 [22]. Three sensitive parameters: learning rate, dropout, 
and epochs are carefully tuned to be 0.00005, 150, and 0.2275 that obtain the best performance. 
A too-high learning rate makes the model premature converge on a high error rate. In contrast, 
a too-low learning rate slightly reduces the error so that the training is time-consuming. A too-
large dropout rate may remove the good network weights, whereas a too-small dropout rate can 
cause the model to overfit. A too-big epoch makes the model overfit while a too-small epoch 
causes it to underfit. 
 

Table 4. Parameters of MDS 
Parameter Value 

Training batch 88 
Validation batch 40 
Testing batch 40 
Hidden neuron 512 
Learning rate 0.00005 
Epoch 150 
Dropout rate 0.2275 
Beam width 1024 
lm alpha 1.50 
lm beta 2.10 

 
 The parameters of the KST-E2EASR is set to the default parameters, as illustrated in Table 
5 [22]. Two sensitive parameters: number of encoders and number of decoders, are set to be ten 
that produce the lowest WER as well as adjust the language specificity. They can avoid 
overfitting and also optimize the loss function. 
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Table 5. Parameters of KST 
Parameter Value 

Input Layer 80 
Encoder Stacks 6 
Multi Attention Head (MHA) 8 
Dimension of Key (DK) 64 
Dimension of Value (DV) 64 
Dimension of Model (DM) 512 
Dimension of Inner (DI) 512 
Dropout Rate 0.10 
Positional Encoding max length 5000 
Dim of Decoder Embedding 512 
Decoder Stacks 6 
Share Decoder Embedding 1 
Label Smoothing 0.10 
Epochs 150 
Shuffle 1 (true) 
Batch Size 16 

 
4. Results and Discussions 
 The speech recognition engine SPRAAK v1.1.366 is used as a speech decoder. The 
experimental results are listed in two tables. Table 6 shows the word accuracy for the three 
developed systems: monophone-based ASR (MPASR), monosyllable-based ASR (MSASR), 
character-based MDS-E2EASR, character-based KST-E2EASR. The results show that the 
proposed MSASR gives a much higher word accuracy (76.57%) than MPASR (only 63.36%). 
It is comparable to the MDS-E2EASR that produces a word accuracy of 76.90% and the KST-
E2EASR that produces 78.00%. These results inform that the base-component is critical in 
developing an ASR system. A traditional HMM-based ASR model that uses syllables as the 
base-components can give a competitive accuracy. 
 

Table 6. Accuracy produced by MPASR, MSASR, and MDS-E2EASR 

Model Word 
Accuracy 

MPASR 63.36% 
MSASR 76.57% 

MDS-E2EASR 76.90% 
KST-E2EASR 78.00% 

 
Meanwhile, Table 7 describes the error rate for each type of error. Those results show that the 
MSASR is capable of reducing errors produced by the MPASR. It is capable of significantly 
reducing all types of errors. The insertions can be relatively decreased by 11.75% (from 5,489 
to 4,844). Meanwhile, both deletions and substitutions are relatively reduced by up to 18.88% 
and 14.23%, respectively. It concludes that syllable is a better base-component of ASR than 
phoneme. 
 

Table 7. Error rate of monophone-based ASR and monosyllable-based ASR 
Error type MPASR MSASR 
Insertions 5,489 4,844 
Deletions 556 451 

Substitutions 21,165 18,153 
 
 Analyzing the results in more detail finds some improvements in recognizing 
monosyllable-based ASR. These improvements are caused by the following reasons: 
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 The observation range of monosyllable-based ASR is larger than monophone-based ASR. 
For example, the speech ‘syarief’ is wrongly recognized as ‘sharif’ on the monophone-based 
ASR but it is correctly recognized as ‘syarief’ on the monosyllable-based ASR. 
 The monosyllable-based ASR has lower ambiguity in generating words than the 
monophone-based one since the syllable structures are composed of several particular 
phonemes limited by the Indonesian phonotactic rules. For instance, two consecutive 
phonemes of ‘mz’ are never appeared in the formal words nor named entity in the Indonesian 
language. They should be split into different syllables, such as the formal words: ‘om.zet’ and 
‘zam.zam’ and the named-entities: ‘ham.zah’, ‘im.za’, and so on. 
 The monosyllable-based ASR gives fewer word candidates than the monophone-based one 
because of the speaker’s dialect or uncommon speaking rate. Since a syllable commonly has 
long frames, the MSASR is not sensitive to both dialect and speaking rate. In contrast, the 
MPASR is susceptive to both variations since a phoneme may has shorter frames. 
 However, the MSASR can be enhanced by tuning the HMM's parameters or designing 
HMM's structure carefully by a human expert. Besides, they also can be automatically 
optimized using a metaheuristic technique, such as evolutionary algorithm [23], [24], particle 
swarm optimization [25], [26], firefly algorithm [27], [28], krill herd algorithm [29], [30], 
modified multi-sonar bat units algorithm [31], grey wolf optimization [32], [33]. Those 
methods are some of the most popular swarm-based algorithms that give high performance in 
solving a multi-objective optimization problem. 
 
5. Conclusion 
 The Indonesian monosyllable-based ASR (MSASR) has been successfully implemented 
with an absolute improvement of word accuracy up to 13.21% compared to the monophone-
based one (MPASR). The proposed MSASR is comparable to character-based state-of-the-art 
MDS-E2EASR as well as KST-E2EASR. This result proves that the ASR for Indonesian, as a 
simple language with low syllabic complexity, is much better to be implemented using a 
syllable-based model. Next, to increase its accuracy, the context-independent monosyllable-
based ASR should be extended into a context-dependent bisyllable-based one. However, 
bisyllable-based ASR needs extensive acoustic models that should be developed and 
maintained using some advanced methods. 
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