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Abstract: Induction motor with indirect field oriented control is preferred for high performance 

applications due to its excellent dynamic behavior. However, it is sensitive to variations in 

rotor time constant, especially variation in rotor resistance which needs to be estimated online. 

Conventionally the model reference adaptive system with fuzzy logic controllers as adaptation 

is used, which works satisfactorily for one particular operating condition and fails under 

variable operating condition. Therefore the need arises  for a fuzzy controller whose parameters 

are tuned using evolutionary algorithm. In this paper, the input/output gain and the membership 

function parameters of the fuzzy system are optimized using genetic algorithm and particle 

swarm optimization to obtain an optimal designed fuzzy controller for rotor resistance 

estimation. The system is investigated in MATLAB/Simulink environment. Results shows that 

the steady state error in estimation of rotor resistance by the proposed controller under stringent 

operating condition is better with the proposed controller as compared to the conventional trial 

and error based fuzzy controller.  

 

Index Terms: Induction motor (IM), Indirect Rotor flux Field Oriented Vector Control 

(IRFOC), Rotor Flux Model Reference Adaptive system (RF-MRAS), Proportional Integral 

(PI) controller, Mamdani fuzzy controller, Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO). 

 

1. Introduction 

 Traditionally AC machines were used in applications which require only rough speed 

regulation and where the transient response is not critical [1].The advances in the field of 

power electronics has contributed to the development of control techniques for AC machine, 

thus matching its performance with that of a DC machine [2]. These techniques are known as 

vector control techniques and can be categorized as Direct/feedback field oriented control 

method and Indirect/ feed forward method [3]. 

 One of the main issues of vector control is its dependence on motor model and is therefore 

sensitive to the motor parameter variations [4, 5].The variations are mainly due to the 

saturation of the magnetizing inductance and the stator/rotor resistance due to temperature and 

skin effect. These parameter variations lead to changes in the flux amplitude and its orientation 

along the d-axis. The system thus becomes unstable and also increases the losses in the system. 

It has been studied that the variation of rotor resistance is the most critical in indirect field 

oriented vector controlled drives [6]. It is therefore necessary to estimate this change, failing 

which the orthogonality between the synchronous frame 𝑑𝑒 − 𝑞𝑒 variables is lost, leading to 

cross coupling and poor dynamic performance of the drive system. Therefore major efforts 

were put in for online estimation of rotor resistance. Several online parameter estimation 

techniques are reported in the literature, having some pros and cons as listed in Table-1 below 

[7]. 
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Table 1. Online Parameter Estimation Techniques 

 

 It is important to note here that [25-27] reviewed Model reference adaptive system based 

estimation schemes where the adaptation mechanism makes of proportional integral (PI) or 

fuzzy controller for the generation of the change in rotor resistance ∆𝑅 .The PI controller does 

not give satisfactory performance for operating conditions where frequent variation in motor 

speed and load torque is required. Fuzzy logic controller when compared with PI controller do 

not require precise mathematical model , can handle nonlinearity and are more robust, but the 

drawback is that the success of the controller depends on the knowledge and skill in designing 

an efficient inference engine.  

 In this paper the performance of a rotor flux based model reference adaptive system (RF-

MRAC) is investigated The RF-MRAC under investigation evaluates the performance of an 

optimal fuzzy controller based on bio-inspired algorithm and is compared with a conventional 

fuzzy controller for online rotor resistance identification of an indirect rotor flux oriented 

controlled (IRFOC) induction motor drive. The parameter values of the input/output gain 

constants and of the membership functions of the genetic algorithm (GA) and particle swarm 

optimization algorithm (PSO) tuned optimal fuzzy controller have been determined 

simultaneously using a performance index related to integral square error of the rotor flux. The 

main goal is to obtain an optimal  fuzzy controller with the objective to: 1) reduce the d-axis 

flux settling time 2) reduce the steady state error between the actual and reference d-axis flux 

and 3) to improve the accuracy in estimating the actual change in rotor resistance under four 

quadrant motor drive operating conditions. Extensive simulation results are presented to show 

the performance of the optimally tuned fuzzy controller. 

Name Working Principle Pros and Cons 

Spectral Analysis Involves external signal 

injection into the motor [8, 9]. 

Need of external hardware circuit. 

Occurrence of torque pulsation 

and mechanical resonance in 

motor drive system. 

Observer based technique  The wide band harmonics 

spectrum present in the PWM 

voltage fed to the motor is 

considered as the noise input 

[10, 11]. 

Requires no external signal 

injection. 

Large memory requirement. 

Computational complexity. 

Instability due to linearization and 

erroneous parameters. 

Model reference adaptive 

system based technique. 

Calculation of parameter to be 

identified in two different ways 

[12-18]. 

First based on references inside 

the control system known as the 

estimated value. 

Second based on measured 

signal known as the reference 

value.  

Simpler implementation and less 

computation. 

Accuracy of estimation heavily 

depends on the machine model. 

Artificial Intelligence and 

Other methods. 

Parameter estimation based on 

fuzzy logic and neural network 

[19-22]. 

Other methods  include 

estimation based on voltage 

measurement across open circuit 

phase winding using special 

switching techniques, Using 

recursive least square method 

and criterion function based [23-

24]. 

Requires application specific 

processor. 

Issues related to sampling time for 

real time interface. 
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 The paper is organized as follows: Section 2 provides an overview of the rotor flux model 

reference adaptive controller and also describes the functions of the various blocks involved in 

the modeling of the vector controlled I.M drive with the rotor resistance identification scheme. 

Section 3 describes the fuzzy control scheme as an adaptive mechanism of the rotor flux based 

model reference adaptive system. Section 4 describes the tuning of proposed optimal fuzzy 

controller parameters using GA and PSO. Section.5 gives the simulation results and discussion 

of the proposed optimal designed Mamdani fuzzy controller adaptive scheme under different 

drive operating conditions and concluding remarks are given in Section 6. 

 

2. Proposed Scheme 

A. Basic Structure of MRAC  

 In the RF MRAC scheme as shown in Figure.1 the reference model computes the flux 

(𝛹𝑟𝑣) using the three phase voltage and current fed to the motor drive and the adjustable 

model computes the flux (𝛹𝑟𝑖) using the current and the speed of motor. The reference model 

is independent of rotor resistance, whereas the adjustable model depends on rotor resistance. 

The error signal 𝜀 = (𝛹𝑟𝑣 − 𝛹𝑟𝑖)is fed to the adaptation block which makes use of a 

conventional fuzzy controller to yield the estimated rotor resistance(𝑅𝑟). In the modified 

scheme to reduce the detuning effect by accurate estimation of rotor resistance, the 

conventional fuzzy controller is replaced by an optimal tuned fuzzy controller whose 

parameters are tuned using GA/PSO as shown in Figure 2. 

 

 
Figure 1. Block diagram of MRAC 

 

 

 
Figure 2. Proposed RF MRAC for rotor resistance estimation 
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B. Theoretical development of the Proposed Scheme 

 B.1. Modeling of IRFOC drive 

 The dynamic model of induction motor for rotor flux oriented vector control application 

can be written as follows 
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         (1) 

 

where, operator p indicates derivative operator 
𝑑

𝑑𝑡
,  𝑖𝑑𝑠𝑒 ,  𝑖𝑞𝑠𝑒 are the stator currents 

and 𝜆𝑑𝑟𝑒 ,  𝜆𝑞𝑟𝑒 the rotor fluxes in 𝑑𝑒 − 𝑞𝑒  frame. Similarly 𝑅𝑠, 𝐿𝑠, 𝑅𝑟 and  𝐿𝑟 are the stator 

résistance, stator self inductance, rotor resistance and the rotor self inductance respectively. 

The rotor time constant is given as 𝑇𝑟 =
𝐿𝑟

𝑅𝑟
 and leakage inductance is 𝜎𝐿𝑠 where 𝜎 = 1 −

𝐿𝑚2

𝐿𝑠𝐿𝑟
. 

For rotor flux oriented control the rotor flux 𝜆𝑟 is directed along the d-axis and is equal to 𝜆𝑑𝑟𝑒 

and therefore   𝜆𝑞𝑟𝑒 = 0. Thus the equation (1) modifies to as shown below. 
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         (2) 

 

 From equation (2) it can be seen that the 𝑑𝑒 − 𝑞𝑒 axis voltage are coupled by the following 

terms: 

𝑣𝑑  𝑑𝑒𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = 𝜔𝑒𝑖𝑞𝑠𝑒 −
𝐿𝑚

𝐿𝑟𝜎𝐿𝑠
𝑝𝜆𝑑𝑟𝑒                                          (3) 

𝑣𝑞  𝑑𝑒𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = 𝜔𝑒𝑖𝑑𝑠𝑒 +
𝜔𝑒𝐿𝑚

𝐿𝑟𝜎𝐿𝑠
                                                (4) 

 

 To achieve linear control of stator voltage it is necessary to remove these decoupling terms 

and is cancelled by using a decoupled method that utilizes nonlinear feedback of the coupling 

voltage. 

 

B.2. Modeling of Rotor Resistance Estimator 

 The block diagram of an IRFOC induction motor drive with rotor resistance estimation 

scheme is shown in Figure.3. The scheme consists of the current control loop within the speed 

control loop. The scheme uses four PI controllers namely the speed controller, flux controller, 

the d and q axis current controller. The proportional and integral gains of the controllers are 

calculated using pole-zero cancellation method and are as given in Appendix-1. The bandwidth 

of the inner current loop is chosen higher than the flux and speed controller. 

 In order to avoid cross coupling between the d-q axis voltages, voltage decoupling 

equations (3) & (4) are adjusted with the output of the controllers to obtain good current 

control action. The d-axis and q-axis reference voltages 𝑣𝑑𝑟𝑒𝑓  and 𝑣𝑞𝑟𝑒𝑓   thus obtained are 

transformed to the stationary i.e. stator reference frame with the help of field angle 𝜃𝑒.The two 

phase voltage 𝑣𝑑𝑠𝑠 and   𝑣𝑞𝑠𝑠 in the stator reference frame are then transformed to three phase 

stator reference voltages 𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 which acts as modulating voltage for the modulator by using 

the sine-triangle pulse width modulation (SPWM) scheme . The modulator output which is in 

the form of pulses is used to drive the IGBT with anti-parallel diode acting as switches for the 

conventional two level voltage source inverter(VSI). 
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Figure 3. Block diagram of a voltage controlled IFOC drive 

 

 As shown in Figure 3 the stator currents are measured and transformed as d-q axis currents, 

which are then used as feedback signals for the current controller. The d- axis current 𝑖𝑑𝑠𝑒  is 

passed through a low pass filter with time constant equal to rotor time constant 𝑇𝑟 to obtain the 

rotor flux which acts as feedback input to the flux controller. The rotor speed 𝜔𝑟 ,  𝑖𝑞𝑠𝑒 ,  𝜆𝑑𝑟𝑒 

and rotor time constant 𝑇𝑟 are used to determine the rotor flux position 𝜃𝑒 for 𝑒−𝑗𝜃𝑒 and 𝑒𝑗𝜃𝑒 

transformation. 

 

B.3. Rotor Resistance Identification Using Rotor Flux  

 The block diagram of the rotor flux based MRAC for identification of rotor resistance is 

shown in Figure.1, where the inputs 𝑣𝑎  , 𝑣𝑏   , 𝑖𝑎  , 𝑖𝑏    and 𝜔𝑟 are the motor terminal voltages, 

current and speed feedbacks.  

 The rotor flux 𝛹𝑟𝑣  obtained from the voltage model which acts as the reference output of 

the model adaptive reference scheme is obtained by measuring the machine terminal voltage 

and currents, which are then transformed to the stationary reference frame as 

𝑣𝑑𝑠𝑠 , 𝑣𝑞𝑠𝑠,  𝑖𝑑𝑠𝑠  &  𝑖𝑞𝑠𝑠. The rotor flux is given by 

 

𝛹𝑟𝑣 = √𝛹𝑑𝑟𝑠𝑣2 + 𝛹𝑞𝑟𝑠𝑣2                                                                                             (5) 

 

where, 𝛹𝑑𝑟𝑠𝑣  and 𝛹𝑞𝑟𝑠𝑣  are the d-axis and q-axis rotor flux in the stationary reference frame 

which are derived as: 

      𝜓𝑑𝑟𝑠𝑣 =
𝐿𝑟

𝐿𝑚
(𝜓𝑑𝑠𝑠𝑣 − 𝜎𝐿𝑠𝑖𝑑𝑠𝑠)                                                                                      (6) 

     𝛹𝑞𝑟𝒔𝒗 =
𝐿𝒓

𝐿𝑚
(𝛹𝑞𝑠𝑠𝑣 − 𝜎𝐿𝑠𝑖𝑞𝑠𝑠)                                                                                      (7) 

 

given that    𝛹𝑑𝑠𝑠𝑣=∫(𝑣𝑑𝑠𝑠 − 𝑅𝑠𝑖𝑑𝑠𝑠)𝑑𝑡 and  𝛹𝑞𝑠𝑠𝑣=∫(𝑣𝑞𝑠𝑠 − 𝑅𝑠𝑖𝑞𝑠𝑠)𝑑𝑡  are the stator d-q 

flux in stationary reference frame, 𝜎 is the leakage inductance and 𝑅𝑠 is the stator resistance. 

Similarly the flux output 

 

𝛹𝑟𝑖 = √𝛹𝑑𝑟𝑠𝑖2 + 𝛹𝑞𝑟𝑠𝑖2                                                                                             (8) 

 

is obtained from the current model for the adjustable model is obtained by measuring the 

current and motor speed 𝜔𝑟 , where 

𝛹𝑑𝑟𝑠𝑖  = ∫(
𝐿𝑚

𝑇𝑟
𝑖𝑑𝑠𝑠 − 𝜔𝑟𝛹𝑞𝑟𝑠 −

1

𝑇𝑟
𝛹𝑑𝑟𝑠)𝑑𝑡                                                                   (9) 

and  

 𝛹𝑞𝑟𝑠𝑖  = ∫(
𝐿𝑚

𝑇𝑟
𝑖𝑞𝑠𝑠 + 𝜔𝑟𝛹𝑑𝑟𝑠 −

1

𝑇𝑟
𝛹𝑞𝑟𝑠)𝑑𝑡                                                                  (10) 
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 The difference between 𝜓𝑟𝑣  and 𝜓𝑟𝑖 acts as the error signal for the adaptive mechanism 

whose output indicates the change in rotor resistance ∆𝑅 which is added up with the nominal 

resistance value i.e. 𝑅𝑟𝑜 to achieve the actual rotor resistance 𝑅𝑟.The obtained new value of 𝑅𝑟 

is then used to determine the slip speed 𝜔𝑠𝑙  and is added up with the rotor speed 𝜔𝑟 to obtain 

the synchronous speed 𝜔𝑒 . 
 

3. Implementation of Fuzzy logic controller 

 Fuzzy logic controllers based on fuzzy theory are used to represent the knowledge and 

experience of a human operator in terms of linguistic variables called fuzzy rules. The 

experienced human operator adjusts the system inputs to get a desired output. The ability of the 

controller to get the desired control action for complex nonlinear system without the 

requirement of mathematical model has made it an important and useful tool in controlling 

nonlinear systems [25, 27]. 

 The generic structure of a Mamdani fuzzy is shown in Figure.4 It consists of two inputs 

e1(k) and e2(k)and one output ∆u . The input e1(k) have been selected as the rotor flux error 

i.e. 𝑒1(k) = ψrv − ψri and its time derivative as e2(k). There are two normalizing      factors 

k1 and k2 for inputs e1(k) and e2(k)  and one de-normalizing factor 𝑘3 for output ∆u..  The 

de-normalizing factor 𝑘3 directly affects the ripple on the controller output because of the 

structure of the fuzzy-PI controller. In normalization process the input values are scaled in the 

range [-1, 1] and the de-normalization process converts the crisp output value of the fuzzy 

controller to a value depending on the output control element.  

 
Figure 4. Block diagram of a fuzzy controller 

 

 In the fuzzifier the crisp values of input 𝑒1(𝑘) and 𝑒2(𝑘) are converted into fuzzy values. 

For this purpose seven triangular fuzzy sets are defined for each input and the output. Figure.5. 

illustrates the triangle membership functions of the first input i.e. 𝑒1(𝑘) which are defined by 

seven linguistic variables as Negative Big (NB) Negative Medium (NM), Negative Small (NS), 

Zero (Z), Positive Small (PS), Positive Medium (PM) and Positive Big (PB) .The overlap rates 

of the memberships are taken as 50%. 

 
Figure 5. Input/output variable fuzzy membership function 
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 The fuzzy rule base represent the knowledge of human operators who make necessary 

changes in the controller output to obtain system with minimum error and faster response. For 

this the behavior of the input signals 𝑒1(𝑘) and 𝑒2(𝑘) has to be observed and accordingly it is 

to be decided whether the controller output ∆𝑢 is to be increased or decreased. The proposed 

controller make use of the sliding mode rule base shown in Table.2 as it is easy to implement 

for real time application and also simplify the design process if optimization of the rule base is 

required.  

 

Table 2. Fuzzy rule table base for rotor resistance estimation 

 
 

 The developed fuzzy logic uses the min – max compositional rule of inference. The 

inference mechanism of the fuzzy controller is implemented with regard to the rule base given 

by µ(𝛥𝑢) = min(µ(𝑒1), µ(𝑒2)).The defuzzification procedure makes use of the centre of 

gravity method and is given as ∆𝑅 = 

 

∑ 𝑦𝑖
𝑛
𝑖=1 µ𝑒𝑜(𝑦𝑖)

∑ µ𝑒𝑜
𝑛
𝑖=1 (𝑦𝑖)

                                                                                    (11) 

 

where, n is the number of fuzzy sets in the output .The final controller output can be obtain as  

 

𝑅(𝑡) =  𝑅∗(𝑡 − 1) + 𝑘3 ∗ ∆𝑅(𝑡) . 

 

 In this study the PI type fuzzy controller is preferred as it minimizes the steady state error 

The input / output gain parameters 𝑘1, 𝑘2 and 𝑘3 and the parameters of the input and output 

membership function for the conventional fuzzy controller are selected by trial and error based 

method based on determining the Integral Square Error (ISE) of the rotor flux as the 

performance index.  

 

4. Fuzzy Controller tuning using GA and PSO 

A. Design of fuzzy controller using genetic algorithm 

 The conventional Mamdani Fuzzy controller is modified as shown in Figure.7 where a real 

coded GA is used for determining the input/output gains and the parameters of the membership 

functions. The real coded GA are more accurate, occupies less space in memory, operates 

faster and can converge to global optimum faster than binary coded GA.   

 The parameters to be optimized consist of the three normalized gain parameters 𝑘1, 𝑘2 and 

𝑘3  and the peak and boundary points of the membership function to be defined as parameters 

𝑝1, 𝑞1 for input  𝑒1(𝑘) , 𝑟1, 𝑠1 for input 𝑒2(𝑘) and 𝑡1, 𝑢1 for output 𝛥𝑢 , as illustrated in 

Figure. 5. The seven sliding mode rule parameters are not considered for tuning. This results in 
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the number of parameters to be optimized from sixteen to nine and has given acceptable results 

with simplified design process of the optimization algorithm. 

 In the developed fuzzy controller following conditions have been considered to minimize 

the optimization parameters. 

 Triangular member ship functions are used for the inputs and output. 

 The number of fuzzy sets for the input and output variables are seven with initial overlap of 

50%. 

 One input can execute maximum two member ship functions. 

 The peak values of the first and last membership functions are +1 and -1. 

.  

 
Figure 7. Block diagram of GA/PSO based fuzzy 

 

 The flowchart of the GA used in the study is shown in Figure. 8, where the controller 

tuning is based on the simultaneous optimization of parameters of the input/output gains and 

the membership function. This approach which is difficult to implement is based on the simple 

reason that the parameters are fully interdependent and will therefore provide an optimal 

solution. 

 

B. Objective function 

 The fitness function  𝐹 as integral square error (ISE) defined for the fuzzy controller is 

given as 

𝐹 = ∫ 𝐸𝑟
𝑡

0
𝑑𝑡                                                                                                                 (12) 

 

where, 𝐸𝑟  = 𝑒2 , given 𝑒 is the error between the reference flux 𝜓𝑟𝑣   and the actual rotor flux 

𝜓𝑟𝑖  as determined in equation (5) and (8) and 𝑡 is the total simulation time. . The GA 

parameters that are to be initialized are the lower and upper limits of the parameters to be 

optimized, the population size, the number of generations, the mutation and crossover 

probability and the elitism property [28, 29]. 

 In the implemented algorithm, the population size is set by the user with the initial 

population created randomly with uniform distribution. The initial score of each chromosome 

in the initial population is determined by using the fitness function  𝐹 . The stochastic uniform 

method is used for the selection process where the uniform lays out a line in which each parent 

corresponds to a section of the line of length proportional to its expectation. In real coded GA 
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the cross over method uses the scattered function instead of single or two point crossovers 

applied for binary coded GA. The scattered function creates a random binary vector with its 

values as zero or one. It then selects the genes where the vector is a one from the first parent 

and if zero selects the gene from the second parent which is then combined to form the child or 

a new individual for the next generation. Genetic algorithms sometimes converge to a local 

minimum. In order to overcome this premature convergence the mutation function is used. The 

mutation function makes small changes in an individual, which provides greater diversity thus 

broadening the search area. In this study the Gaussian function centered on zero is used as 

mutation function. The optimization process goes on as shown in the flowchart till the 

performance index  𝐹 is minimized or the tolerance criterion is met 

 
Figure 8. Flow chart of genetic algorithm 

 

B. Design of Fuzzy Controller Using PSO 

 PSO is a stochastic optimization technique based on population inspired in the social 

behavior of big masses of birds [30]. In PSO the potential solution called particles fly through 

the search space and in doing this iteratively the less optimum particles fly to optimum 

particles, till all the particles converge at the same point. To achieve convergence PSO applies 

two types of learning component.  

 

𝑣𝑖
𝑘+1 = 𝑤𝑖  𝑣𝑖

𝑘 + 𝐶1 𝑟𝑎𝑛𝑑1 ∗  (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑘) + 𝐶2 𝑟𝑎𝑛𝑑2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖    

𝑘 )            (13) 

       𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1                                                                                                               (14) 

 

 The first is the cognitive component which is the experience that every particle gets along 

the optimization process. The second is the social component which is the experience that all 
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swarms get during the optimization process. The advantage of PSO over GA is that it is easier 

to implement and there are fewer parameters to adjust. Second it has more effective memory 

due to its cognitive and social component and third the least successful particle can also occupy 

the search space and use the information related to the most successful particle to improve 

upon where as in GA they are discarded. The flow chart of the PSO algorithm is shown in 

Figure. 9 below. 

 

 
Figure 9. Flow chart of PSO algorithm 

 

  

 The number of parameters to be optimized and their upper and lower limits are kept same 

as that of GA with the initial overlap of the membership function is taken as 50%. The values 

of options of GA/PSO chosen for the optimization are given in Table 3. 

 

 

 

Saji Chacko, et al.

227



 

 

Table 3. Optimization parameters/values of GA/PSO 

Genetic algorithm parameters Particle swarm optimization parameters 

Parameters Values/methods Parameters Values/methods 

Population size 30 Population size 30 

Maximum generation 50 Maximum generation 50 

Selection method Stochastic uniform Cognitive attraction(C1) 0.5 

Chromosome length 9 Social attraction ( C2) 1.25 

Crossover fraction 0.8 Particle inertia 0.9 

Migration rate 0.2 Initial velocity 0.2 

Elitism rate 2   

Mutation function Gaussian   

  

 The tuned values of the input/output gain parameters 𝑘1, 𝑘2, 𝑘3 are given in Table.4 and 

the tuned values of the membership function parameter 𝑝1, 𝑞1, 𝑟1, 𝑠1, 𝑡1 and 𝑢1 are given in 

Table 5. 

 

Table 4. Value of gain parameter variables 

Tuning method 

Fuzzy input/output normalized gain 

parameter variables 

𝑘1 𝑘2 𝑘3 

Conventional Trial & Error 1 0.1 13 

Using GA 0.9787 0.3003 29.973 

Using  PSO 0.7885 0.3198 27.823 

 

 

Table 5. Value of member ship function gain parameter variables 

 

Tuning method 

Fuzzy input/output membership function gain parameter 

variables 

𝑝1 𝑞1 𝑟1 𝑠1 𝑡1 𝑢1 

Conventional Trial & Error 0.1254 0.2373 0.4429 0.1043 0.1202 0.32 

Using GA 0.0955 0.5471 0.2590 0.8851 0.4699 0.9969 

Using  PSO 0.0015 0.7101 0.3903 0.7849 0.4969 0.9656 

 

5. Results and Discussion  

 A simulation model of voltage controlled IRFOC as shown in Figure.3 is developed in 

MATLAB/Simulink environment to ascertain the effectiveness of the proposed adaptive 

algorithm. The parameters and ratings of the test motor are given in Appendix-2. The SPWM 

technique is used with a switching frequency of 10 kHz. The system is tested for step increase 

in rotor resistance. For this an external resistance is connected to the rotor circuit of the three 

phase slip ring induction motor externally. Generally rotor resistance changes due to increase 

in motor temperature; however, such sudden practical change in rotor resistance rarely occurs 

in practice due to the large thermal time constant and is considered here just to show the 

effectiveness of the controller. The effectiveness of the adaptive controller is first tested for 

step increase in rotor resistance for operating condition as stated in Case-I and II and for step 

decrease in rotor resistance for condition as stated in Case-III.  Under these operating 

conditions the performance analysis of the proposed GA/PSO tuned fuzzy controller based RF-

MRAC in terms of settling time and steady state error is made and is compared with the 

conventional fuzzy controller. 
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Case-I: Increase in rotor resistance for constant speed and load torque   

The IFOC drive is operated at constant speed of 1000 rpm with load torque of 4 Nm. A step 

change in rotor resistance 𝑅𝑟 equals to 1.5 times its nominal value 𝑅𝑛𝑜𝑚 is made at t= 7 sec. 

Variation in actual rotor flux and estimation of rotor resistance for this step change  is shown in 

Figure.10. It is observed that the actual and the reference value of the d-axis flux remains same 

i.e. 0.936 𝜔𝑏 till the instrumented and actual value of rotor resistance are equal. At t=7 sec 

when the change in rotor resistance is initiated it is seen that that the fuzzy adaptive based 

MRAS whose gain and membership parameters that are tuned by trial and error method, there 

is a pronounced peak overshoot of the actual rotor flux from its reference value and takes about 

approximately 4 sec to settle down. This increase in rotor flux which is more than 20% may 

lead to over excitation of the motor resulting in increased core losses and saturation. For the 

same operating condition it is seen from Figure.11and Figure.12 that the peak overshoot of the 

actual rotor flux for step change in rotor resistance is minimal about 10% where the parameters 

of the fuzzy adaptive based MRAS is optimized using GA& PSO. Similarly the comparison of 

the conventional and the optimal tuned fuzzy controller for tracking the step change in rotor 

resistance are shown in Figure. 10(c) and Figure.11(b) and Figure.12(b) respectively .The 

performance index with reference to settling time and the steady state error for estimation of 

rotor resistance are shown in Table. 6. 

 
Figure 10. Variation of rotor flux and 𝑅𝑟 for step increase in 𝑅𝑟 for Case-I: Conventional fuzzy 

controller. 

 

 
Figure 11. Variation of rotor flux and 𝑅𝑟 for step increase in 𝑅𝑟 for Case-I: GA tuned fuzzy 

controller 
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Figure.12. Variation of rotor flux and 𝑅𝑟 for step increase in 𝑅𝑟 for Case-I: PSO tuned fuzzy 

controller 

 

Case II: Increase in rotor resistance for variable speed with constant load torque 

The effect of step increase in rotor resistance is investigated when the drive is subjected to 

variable speed operation as shown in Figure. 13.The drive operates at 1000 rpm from 2-12 sec 

and then operates at zero speed at full load torque from 12-17 sec and thereafter operates in the 

reverse direction at 500 rpm from 17-25 sec. exhibiting the operating condition of industrial 

overhead crane drive system. The step increase in rotor resistance as described above is again 

initiated at t = 7 sec. It is seen from Figure.14 and 15 for an optimal fuzzy controller the actual 

flux deviates from its reference value marginally when the drive is operating in the reverse 

direction. It is also observed from Figure.13 that the steady state error in terms of rotor 

resistance estimation is more pronounced with the conventionally tuned fuzzy controller as 

shown in table where as it very low for the optimal tuned fuzzy controller as observed in 

Figure 14 and 15. 

 

 
Figure 13. Variation of rotor flux and 𝑅𝑟 for step increase in 𝑅𝑟 for Case-II : Conventional 

fuzzy controller. 
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Figure 14. Variation of rotor flux and 𝑅𝑟 for step increase in 𝑅𝑟 for Case-II : GA tuned fuzzy 

controller. 

 

 
Figure 15. Variation of rotor flux and 𝑅𝑟 for step increase in 𝑅𝑟 for Case-II: PSO tuned fuzzy 

controller. 

 

Case-III: Decrease in rotor resistance for constant speed with variable load torque 

The drive is operated at constant speed of 1000 rpm but is subjected to variable load torque as 

shown in Figure.16 indicating an extruder drive application. Under this operating condition, a 

step decrease in rotor resistance 𝑅𝑟 equal to 0.7 its nominal value 𝑅𝑛𝑜𝑚 is made at t = 7sec 

indicating a symmetrical  inter turn short of the rotor winding . This condition is simulated by 

entering a wrong rotor resistance parameter value in the controller at t= 7sec. It is seen from 

Figure.16 (b) that there is a prominent under excitation in rotor flux during step decrease in 

rotor resistance. This will lead to increase in motor current as the torque developed is 

proportional to the flux and stator current.  It is observed from Figure.16 that the estimation of 

change in rotor resistance during change in load torque from 4 to 2 Nm of a conventional 

controller deteriorate and becomes more prominent when the drive operates in the braking 

region from t =22 to 25 sec as compared to the GA/PSO tuned fuzzy controller shown in 

Figure.17 and 18 . 
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Figure. 16 Variation of rotor flux and 𝑅𝑟 for step decrease in 𝑅𝑟 for Case-III: Conventional 

fuzzy controller. 

 

 
Figure 17. Variation of rotor flux and Rr for step decrease in Rr  

for Case-III: GA tuned fuzzy controller. 

 

 
Figure 18. Variation of rotor flux and 𝑅𝑟 for step decrease in 𝑅𝑟  

for Case-III: PSO tuned fuzzy controller. 
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6. Conclusion 

 A new approach for the rotor resistance identification of induction motor drive using 

GA/PSO tuned fuzzy controller has been presented. The identification is online and is based on 

the steady state model of indirect field oriented controller. Based on the investigations it can be 

concluded that the performance of the optimal tuned fuzzy controller is better than the 

conventional Mamdani type fuzzy controller. The d-axis flux settles approximately in about 

one second and the peak overshoot in the flux value during change in motor operating 

condition or change in rotor resistance is less than 10% .It is also observed from the results that 

the tracking of change in rotor resistance by optimal tuned fuzzy controller in terms of steady 

state error (ITSE) and settling time is far better than Mamdani fuzzy controller. As far as the 

ease of use of algorithm is concerned, optimization using PSO is better than GA due to the less 

number of options to be initialized. Moreover it is seen that the steady state error in estimation 

of rotor resistance by the two stochastic algorithms are comparable. In the study although the 

proposed optimal fuzzy controller is obtained using GA/PSO, so as to perform optimally under 

one working condition, however it is seen that a noticeable improvement has been achieved 

over the conventional controller both in transient and steady state even if the drive is subjected 

to varying working condition as in Case-II and III. 

 

Table 6. Comparison of controller performance 
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Appendix -1 . Proportional (kp) and Integral (ki) gains of PI Controllers 

 

PI Controller     kp ki 

Speed control loop 1.295 0.2967 

Flux control loop 110.6 1083.5 

Inner de − qe current loops 98.61 9087.04 

 

 

 

 

 

 

Saji Chacko, et al.

233



 

 

 

Appendix-2. The motor parameters chosen for simulation study 

Parameters Values(units) 

Power 0.746KW 

Voltage 415V 

Stator current 1.8Amp 

Speed (rpm) 1450 rpm, 

Stator Resistance (Rs) 10.75 Ω 

Rotor Resistance (Rr) 9.28 Ω 

Self Inductance (Ls/Lr) 0.5318 H 

Moment of Inertia (J) 0.011787 kgm2, 

Friction coefficient (B) 0.0027 Nm/rad/sec 
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