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Abstract: Selecting an efficient route and profitable fish aggregating device (FAD) 

position has become a significant matter for fishermen due to fuel limitations and 

environmental conditions. Certain efforts have been offered to determine the best FAD 

route by means of optimization methods. The firefly algorithm (FA) is one optimization 

method that has recently been developed and implemented. Furthermore, the genetic 

algorithm (GA) has been applied in many cases, including maritime. The objective of 

this study is to analyze the route optimization and to determine a profitable FAP based 

on FA and GA approaches. Simulations involving gamma value as the attractiveness 

variation and alpha as the randomness movements of fishing vessels are conducted. 

Their time complexity is computed to evaluate both performances. The mean absolute 

percentage error (MAPE) is also calculated in order to obtain the accuracy of 

forecasting/predicting the route to FAD position.  
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1. Introduction 

 Maritime technology has expanded increasingly in the form of various navigation devices 

including the implementation of metaheuristic approach. Certain methods have been adapted 

from the collective behavior and interaction of living creatures following simple rules. Such 

approaches are promising because they can solve the problem quickly but they do not 

guarantee optimal problem-solving; for example, the gossip algorithm, combining with the 

searching algorithm breadth first search [1]. Other metaheuristic techniques have been adopted, 

such as the genetic algorithm (GA), ant colony optimization (ACO), the firefly algorithm (FA), 

and cuckoo search. Due to their flexibility in terms of problem solving, these approaches are 

suitable for maritime implementation.  

 FA is an optimization method that imitates firefly interaction behavior within its group, and 

is currently applied in various fields, such as power system, i.e. determining optimal power 

flow (OPF) with control variables and FACTS device concern [2-4] offering solution to handle 

redundancy optimization problem (ROP). For applications in wireless networks, a hybrid 

technique has been proposed to minimize cluster head energy, based on the firefly and artificial 

bee colony (ABC) algorithms [5]. In healthcare, a heart disease diagnosis system utilized the 

chaos firefly and genetic hybrid algorithms for the learning process to search for optimal 

reduction of computational and gain performance [6]. A hybrid approach between FA and GA 

has also been applied to detect and diagnose breast cancer. FA has shown superior performance 

in terms of optimizing weights and biases, and has a lower mean square error than those of 

biogeography-based optimization, particle swarm optimization, and ACO [7]. Application FA 

has been investigated in queuing systems to solve multi-objective problems and parameters, 

such  as  absorption  coefficient, firefly population, and number of iterations. Simulation results  
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have revealed that FA is a simple, easy-to-implement method, and powerful technique [8]. 

Despite the FA having been widely applied for problem solving and optimization, the standard 

FA has the disadvantage that it may become stuck in several local optima when dealing with 

complex problems. Consequently, to avoid various local optima and speed up convergence, 

many researchers have offered a modification of FA [9,10].  

 Various maritime studies have been conducted, particularly investigations of fishing vessels 

(ships), such as analyzing fishing vessel tracks and activities regarding the use of an artificial 

neural network to improve fishery management, and identifying a landing profile for a vessel 

monitoring system (VMS) [11]. Furthermore, the improvement of fishing vessel routing 

protocols with the gossip approach, in the existing ad hoc on-demand distance vector (AODV), 

has been evaluated [12]. Other supporting research has revealed the stochastic model for the 

fishery industry, concerning both sides (upstream and downstream) to address potential 

economic issues with supporting technology and applications. The integral stochastic model for 

fish processing value chain. This proposed model had a feature chance when dealing with real-

world complications [13]. In addition, GeMASS offered a knowledge discovery system to 

identify abnormal maritime security threats in real time, based on GA [14]. Investigation of 

fishing operations has been conducted, such as purse seine optimization relied on the trip 

length and the cost of supplies for fishing operations [15].   

  In this paper, two optimization methods (FA and GA) already been applied to various 

problems were evaluated. GA was selected because it was suitable for handling discrete 

problems, in which the optimum solution was determined from a finite number of possible 

solutions [16]. GA exhibited reliable problem solving in many applications, and could improve 

the significant parameter for forecasting tools, face recognition, and simulation of some 

diseases [17-19]. Meanwhile, FA was selected because it was concerned with the movement of 

each firefly in accordance with the conditions of fishing vessels moving toward fishing 

locations, as an attraction with a brighter light intensity than others. Both methods were 

investigated dealing with maritime conditions, where the scenario was that many fishing boats 

scattered in the sea, attempting to reach a given FAD position [20]. The fishing vessel had to 

consider fuel affecting the distance and time toward the destination as well as the profitable 

FAD as a result of weather conditions and sea waves (figure 1). The remainder of this paper is 

as follows. Section 2 introducing the FA and its modification for this study, section 3 

discussing the GA, section 4 explaining the simulation and results, section 5 discussing the 

evaluation, and section 6 presenting our conclusion.   

 

 
Figure 1. Fishing vessels toward FAD position 
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2. Firefly Algorithm  

 In this section, the modified FA applied to the maritime problem was described. The 

objective functions and optimization variables used in the study were also identified, in which 

FA simulations involving two types of parameters namely γ and α were conducted.  

 

A. Firefly Algorithm  

 FA is a metaheuristic technique and a subset of swarm intelligence (SI) concerning with a 

group of multiple agents’ behavior and the interaction among them is in accordance with 

certain rules. The rules describing the behavior of artificial fireflies are as follows [21]: 

• All fireflies are unisex; therefore, one firefly is attracted to others. 

• Attractiveness is proportional to brightness; it decreases as the distance between two 

fireflies increases. If there is no brighter firefly, it will move randomly. 

• The brightness of a firefly is determined by the landscape of the objective function.  

 

 The objective function of the proposed method consists of the efficient path and profitable 

FAD position for each fishing vessel, where profitable is defined as an effective environmental 

condition for catching fish. The objective function used in this study is: 

 332211 minimize XwXwXwZ  , (1)        

 

where X1 = distance between fishing vessel and FAD; 

           w1= weight of variable X1; 

      X2 = weather condition at FAD;  

        w2= weight of variable X2; 

     X3 = sea wave condition at FAD; and 

       w3= weight of variable X3; 

 

 Various variables of wi express the relative importance weight of each Xi. The exact value 

of wi  can be determined based on some consideration to a particular FAD problem. In this 

case, it is determined by w1=0.4, w2=0.2, and w3=0.4.  

 The light intensity is inversely proportional to the distance r from the light source, and the 

light and attractiveness decrease as the distance increases. 

 
 

2

0
reIrI  ,

 
(2) 

where I denotes light intensity, we assume I0 = 1 initially,  is the attractiveness coefficient, and 

r is the distance among fireflies. The movement of a firefly i is attracted to a brighter 

firefly j defined as: 

 
)5.0()(

2

0 


 randixjxijr
eixix 


 ,
 

(3) 

where ix represents the position of firefly i , and the second part defines the attractiveness of a 

firefly, where
0 denotes the attractiveness coefficient. In this study, firefly j is considered as 

the FAD position. The larger the value of  , the faster the firefly will be in approaching 

another, brighter firefly; therefore, the searching process is faster but less accurate. Referring to 

equation 3, it is set ,10   which indicates the highest attractiveness coefficient that affects 

the approaching of another firefly faster [22]. Furthermore,  represents the variation of 

attractiveness, including the distance to the FAD position, weather and sea wave. These 

variations are denoted by 1 , 2 , and 3 ,
 
respectively. Likewise,  represents the randomness 

of a firefly also influenced by weather, because the movement of fishing vessels tends to be 
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more random when visibility is limited by foggy conditions. table 1 shows the complete set of 

values for   and  .  

Table 1. Values of  and   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Modified Firefly Optimization  

 The modified firefly optimization consists of three model parts: input, process, and 

expected output. The input deals with the number of fishing vessels and their positions, the 

FAD position, and environmental status. The process applies the FA by determining certain 

parameters, and the output obtains the objective of this method (see figure 2).  

 

 

 
Figure 2. System Model 

 

 

 The optimization flowchart is shown in figure 3. It begins with certain input parameters, 

and then defines values for each FAD position considering the environmental sea condition. 

Thereafter, the value of randomness, set as α, is defined, and γ and the new FAD position are 

calculated. In addition, the movement (p), based on equation 3, is defined.  

 

Variation of   Description Value 

1  
Distance to FAD position [0,1] 

2  Weather 

Range [0,1] 

Foggy    →  1 

Cloudy  →   0.5 

Sunny   →   0.01 

3  Sea wave (m) 

Range [0,1] 

2.5 - 4.0     → 1 

1.25 - 2.5   →  0.5 

0.5 - 1.25   →  0.01 

  Weather 

Range [0,1] 

Foggy    → 1 

Cloudy  →  0.5 

Sunny   →  0.01 
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Figure 3. Modified FA Flowchart 

 

3. Genetic Algorithm 

 GA is a population-based optimization technique classified by nature-inspired sources such 

as selection, crossover, and mutation [22]. This algorithm consists of the following steps. 

Firstly, the initial population is generated arbitrarily, and the size is adapted to the problem. 

Secondly, selection proceeds within the population, based on the defined fitness function. The 

selected individuals are parents and contribute to the next population of the generation. In this 

study, the fitness function is defined as an efficient route that is profitable toward the FAD 

position for each fishing vessel. Two operators are involved in the GA, namely crossover and 

mutation.  

 

 
Figure 4. Modified GA Flowchart 
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 The function of the crossover operator involves, combining two parents to produce a new 

generation that has the same typical features and is superior to its parents [23]. The mutation 

operator, however, creates new children by implementing random changes to the individual 

parents. The new population of the generation terminates when a certain criterion is reached. 

The fitness function of the modified GA is the same as the formula in equation 3. Considering 

the distance from the vessels to the FAD position, this parameter could not be randomly 

generated. The distance toward the FAD position is a fixed parameter, and significant for this 

study.  

 

 4. Simulation and Results 

A. Simulation parameters and scenario  

 The FA simulations were conducted in MATLAB 7.10. The scenario for this simulation 

was that many fishing vessels departing from the port to the FAD (figure 5). Assuming the 

fishing vessel is denoted as a node, while the FAD and port positions are fixed, then calculate 

the distance from all fishing vessels to the FAD. When they move to any FAD, the 

environmental conditions must be considered. The complete set of simulation parameters is 

shown in table 2. The simulation scenario involves 10 fishing vessels with known positions, 

moving toward three FAD, where each FAD has different conditions due to the environmental 

influences. The FAD conditions are expressed as 24 circumstances of weather ( 3 ) and sea 

waves ( 2 ) [24], meaning that all fishing vessels should reach their destination within 12 hours 

of prediction, and for the next 12 hours, they will consider coming home and time for catching 

fish. Under these circumstances, we implement FAD position_cond1 as 3 and FAD 

position_cond2 as 2 . Similar to FA, at the start of the GA, input parameters and the initial 

population are defined. 

 

Table 2.  Simulation Parameters 

Parameter and set-up Values 

Number of fishing vessels  10 

Number of FAP  3 

Environment size (EnvSize) 1000 km2 

Fishing vessel speed 40 km/hour 

 

B. Simulation 

 For this simulation, 10 nodes are generated as a representation of the fishing vessels, and 

three FAD set-up positions i.e. FAD1, FAD2, and FAD3 (figure 5). Furthermore, the condition 

of each FAD is determined for 12 hours, at envSize 1000 (square kilometers) and has the same 

density (tons of fish per area). The initial positions of the nodes and FADs are illustrated in Fig. 

4. Each fishing vessel (V1,..., V10) determines the most efficient path based on the distance and 

time to FAD. The positions of fishing vessels and FADs are determined in the beginning. Due 

to randomness, the coefficient α is influenced by conditions at the FAD. When conditions are 

clear (sunny), the fishing vessels will move straight to the FAD. Multiple simulations were 

conducted to obtain the FA results. The use of the rand function in Matlab affects the fishing 

vessels’ movement during the simulation; thus, the movement always changes during any 

simulation, even when starting in the same initial position. The movements of each fishing 

vessels are illustrated in figure 5, and the results are shown in table 3 and 4. 
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Figure 5. Initial Positions of Fishing Vessels and FAD 

        

Table 3. Step 6 of FA Simulation 

Vessel 

First Simulation Second Simulation Third Simulation 

FAD 

destination 

FAD 

position 

distance 

 (km) 

FAD 

position 

prediction 

 (km) 

FAD 

destination 

FAD 

position 

distance 

(km) 

FAD 

position 

prediction 

(km) 

FAD 

destination 

FAD 

position 

distance 

(km) 

FAD 

position 

prediction 

(km) 

1 2 164.88 185.35 2 171.90 202.39 2 196.58 229.13 

2 3 99.42 126.17 3 126.50 151.01 3 119.22 147.68 

3 1 252.79 285.30 1 281.76 321.48 1 272.37 303.73 

4 3 185.34 224.26 3 183.70 209.88 3 159.41 197.44 

5 1 162.85 202.45 1 149.49 178.51 1 175.50 212.86 

6 3 216.70 256.30 3 248.97 261.04 3 186.79 224.05 

7 3 216.11 247.73 3 214.58 253.53 3 221.57 249.14 

8 3 136.89 174.06 3 109.61 122.58 3 130.44 153.30 

9 2 158.28 187.41 2 111.62 146.70 2 144.20 164.50 

10 2 154.08 188.78 2 129.18 150.39 2 160.50 189.47 

 

Table 4. Step 12 of FA Simulation 

Vessel 

First Simulation Second Simulation Third Simulation 

FAD 

destination 

FAD 

position 

distance 

(km) 

FAD 

position 

prediction 

(km) 

FAD 

destination 

FAD 

position 

distance 

(km) 

FAD 

position 

prediction 

(km) 

FAD 

destination 

FAD 

position 

distance 

(km) 

FAD 

position 

prediction 

(km) 

1 2    90.60   113.56 2   83.65 112.47 2    151.06 186.71 

2 3     58.73    85.79 3    67.07 93.93 3 55.01 70.84 

3 1  193.81 209.36 1  228.28  257.22 1 201.56   232.91 

4 3  115.28  141.17 3 118.14 150.15 3  88.20  113.77 

5 1 102.57   125.79 1 91.58   112.76 1 112.81   136.81 

6 3 138.70   148.61 3 182.32 205.07 3 128.25   154.99 

7 3  116.02   141.28 3 181.79  189.07 3 146.60 170.64 

8 3 39.74   67.51 3 38.37 57.95 3 58.69   92.53 

9 2  73.70    88.15 2 54.25    90.04 2 69.71   109.63 

10 2  137.57   171.04 2 65.85    81.82 2 85.52   109.97 
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 Referring to table 3 and 4, the distance between the fishing vessels and FAD become 

smaller. The differences in both steps 6 and 12 are not very large, because the vessel speed 

cannot exceed 40 km/h, resulting in the ships still being far from the FAD. Furthermore, it can 

be inferred that the prediction distances from Vi to FAD differ greatly, because of the vessels’ 

movements due to the influence of weather and sea waves. This can be seen in figure 6, where 

each vessel moves to the FAD in 12 steps. FA provides a route optimization for fishing vessels 

toward the FAD, and enables the vessels to reach their destination quickly. Based on the 

simulation, we list each fishing vessel’s rank to determine the most suitable objective, using 

equation 1 (table 5). Certain simulations were conducted with more than 12 steps, and the 

results indicate that most vessels are within the FAD area in steps 16 and 17. Table 5 shows the 

ranking of fishing vessels that obtained optimization with the minimum objective function. 

Generally, Z scores are between 0.2 and 1.01. From the first simulation conducted, V10 is the 

most suitable candidate toward FAD2, followed by V8 toward FAD3. However, this differs 

with other simulations, where V4 and V8 are the best candidates toward FAD3. From the three 

simulations, V1 exhibits a constant value of the objective function.  

 

Table 5. Rank of Fishing Vessels with FA 
        

Sim 

 

Rank 

First Second Third 

Vessel Z 
FAD 

destination 
Vessel Z 

FAD 

destination 
Vessel Z 

FAD 

destination 

1 10 0.2142 2 4 0.2541 3 8 0.2960 3 

2 8 0.3854 3 1 0.3583 2 1 0.3337 2 

3 1 0.5827 2 2 0.4540 3 9 0.5493 2 

4 2 0.5936 3 5 0.5787 1 7 0.6328 3 

5 5 0.6275 1 9 0.6529 2 6 0.6505 3 

6 4 0.7125 3 8 0.6875 3 10 0.6681 2 

7 7 0.7463 3 3 0.7422 1 5 0.7841 1 

8 3 0.7556 1 10 0.7520 2 3 0.8060 1 

9 9 0.7953 2 6 0.9222 3 4 0.8822 3 

10 6 1.0101 3 7 1.0101 3 2 1.0101 3 

   Sim = simulation 

 

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

FAD1

FAD2

FAD3

FAD1

FAD2

FAD3

FAD1

FAD2

FAD3

FAD1

FAD2

FAD3

FAD1

FAD2

FAD3

FAD1

FAD2

FAD3

FAD1

FAD2

FAD3

FAD1

FAD2

FAD3

FAD1

FAD2

FAD3

FAD1

FAD2

FAD3

V 1

V 2

V 3

V 4

V 5

V 6

V 7

V 8

V 9

V 10

FAD1

FAD2

FAD3

FAD1

FAD2

FAD3

 
(a) First Simulation 
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(b) Second Simulation 

Figure 6. FA Fishing Vessels’ Movement 

 

 GA simulation were further conducted, the results of which are shown in table 6 and 7, 

which indicates that the distance between Vi and the FADs are similar with distance prediction. 

This is because, in GA, processes such as crossover and mutation were conducted before the 

next step, meaning that the best results will be used. GA requires fewer steps to reach the FAD 

for all Vi, while FA requires many, as even in step 12, all Vi  are still far from the FAD.   

 

 

Table 6.  Step 5 of GA Simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vessel 
FAD 

destination 

FAD 

distance 

(km) 

FAD 

prediction 

(km) 

 

1 2 82.843 82.843  

2 3 12.407 12.407  

3 1 160.00 160.00  

4 3 56.125 56.125  

5 1 56.125 56.125  

6 3 141.760 141.760  

7 3 122.490 122.490  

8 3 3.961 3.961  

9 2 43.411 43.411  

10 2 33.238 33.238  
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Table 7.  Step 9 of GA Simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

 Figure 7 illustrates the simulation of the fishing vessels’ movement, which is straight 

toward FAD1, FAD2, FAD3, as opposed to FA. Consider the movement of fishing vessels is 

shown as straight line toward FAD; however, in real time the movement is not always straight 

toward a destination, as a result of changes in sea conditions, such as weather, sea wave height, 

and ocean currents.  
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Figure 7. Modified GA Fishing Vessels’ Movement 

 

 The movement of fishing vessels in the form of a straight line uses GA, because in this 

mechanism there is a regeneration process. The process is obtained after the crossover and 

mutation process, where the next generation is obtained from the best previous generation, 

therefore, the next distance prediction is determined from the best previous prediction. Also, 

consider the firefly behavior, in which equation 3 shows a rand function or random movement. 

The firefly behavior represented by the vessel is strongly influenced by environmental 

FAD 

destination 

FAD 

distance 

(km) 

FAD 

prediction 

(km) 

2 2.0 2.0 

3 2.0 2.0 

1 0 0 

3 2.0 2.0 

1 2.0 2.0 

3 2.0 2.0 

3 2.0 2.0 

3 2.0 2.0 

2 2.0 2.0 

2 2.0 2.0 

Qurrotul Aini, et al. 

756



 

 

conditions (light/dark conditions) thus affecting the movement of the ship towards a direction 

that has a brighter intensity. For further exploration, this rand function should be substituted by 

a function that represents the movement of a real ship. 

 

5. Performance evaluation 

 The performance of these two mechanisms can be examined from the computational 

complexity. The performance of the two mechanisms is shown in Table 8, where computing 

time complexity is performed. This result was obtained by doing iteration 24 times for each 

method and performed 50 times running. For GA, a new generation are raised 5 times. 

 

Table 8. Results for time complexity after 50 runs 

Number of 

ships 

Firefly Algorithm Genetic Algorithm 

Best value (s) 
Worse 

 value (s) 

Mean  

value (s) 

Best 

 value (s) 

Worse 

 value (s) 

Mean  

value (s) 

10 0.0650 0.1112 0.08032 7.445 14.3037 9.4326 

20 0.1151 0.2733 0.13852 15.7209 21.1691 18.49636 

30 0.2099 0.3225 0.2413 24.1058 29.3153 26.97218 

 

 From Table 8, it can be concluded that the bigger number of vessels to choose the best 

FAD, the longer the required time for both methods to perform optimization. GA takes longer 

than the FA. 

Table 9. MAPE Scores (%) 

      Sim = simulation 

  

To obtain information on the accuracy of both methods in forecasting and predicting, therefore, 

MAPE score is calculated. A formula of MAPE is shown in equation 4. 

 

 

%
ˆ

100
1

MAPE

1




 


n

i i

ii

D

DD

n
 

(4) 

 

where Di denotes the actual distance of vessel i toward the FAD and iD̂ denotes the predicted 

distance of vessel i toward the FAD. Refer to equation 4, the MAPE of FA and GA are 

calculated, as listed in table 9. These results are illustrated in figure 8. Figure 8 indicates that 

the MAPE of GA is smaller than FA. This result proves that the accuracy of GA method is 

better than FA. This is because the process in the GA mechanism is complex, therefore, the 

predicted obtained results are more accurate.  

 FA GA 

1st 2nd 3rd 1st 2nd 3rd 

1 11.46 11.11 9.93 9.6316e-013 1.1138e-012 1.0271e-012 

2 11.85 12.46 10.59 8.5374e-013 9.3958e-013 1.2778e-012 

3 11.92 11.59 11.54 2.0865e-012 2.4657e-012 2.0188e-012 

4 14.40 13.09 13.64 3.2479e-012 3.5008e-012 3.7442e-012 

5 12.89 15.12 15.35 1.2466e-011 1.3386e-011 1.2462e-011 

6 16.34 14.00 17.17 3.7339e-011 4.1931e-011 3.3455e-011 

7 16.70 15.50 15.42 7.8849e-011 8.3926e-011 7.5838e-011 

8 15.18 16.82 17.68 7.4582e-011 9.2899e-011 7.3998e-011 

9 18.20 17.47 17.71 7.6024e-011 9.4147e-011 8.7930e-011 

10 20.05 22.24 22.03 7.7456e-011 9.4147e-011 8.7930e-011 
MAPE 

average 16.21 17.29 16.58 3.64e-011 4.28456e-011 3.79681e-011 

Step 

Sim 
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Both methods are an optimization process in which they display optimized and complete 

results with a different number of iterations, computing times, and accuracy. GA has fewer 

iterations to get a high accuracy, but much consume time-computing. The results of the 

evaluation of both methods are inferred in table 10. 

 

Table 10. Computational Evaluation 

Evaluation Firefly Algorithm Genetic Algorithm 

Time computation Fast Slow 

Accuracy Fair Excellent 

Optimal Fair Excellent 

Complete Yes Yes 

 

 Several similar studies have been conducted such as route optimization on GA based solar 

ship with the aim of maximizing the efficacy of solar energy systems and improving the energy 

efficiency. This research proves that the model can effectively reduce the energy waste and 

environmental pollution through the synergy of a sail-solar ship with route optimization [25]. 

Another study proposed a hybrid route-path planning model for an Autonomous Underwater 

Vehicle’s. This model is combined two techniques, i.e. Differential Evolution and Firefly 

Optimization (DEFO) Algorithms. The simulation indicated that the proposed model offered an 

efficient performance while some assigned tasks consumed a minimum energy [26]. According 

to [27], an incremental transportation route algorithm is best suited to solve the route 

optimization problem in sea-trade than ant colony optimization (ACO) in terms of accuracy 

and time spent.  

 From previous description of similar research, there are several things that concern in a 

route optimization i.e. closely related to environmental and resource issues. The objective of 

optimization is reducing the negative impact on the environment such as air, water pollution, 

and resource (energy). While in this study, the impact of the route optimization is not explored, 

for instance, efficiency in fuel, time, or energy.  

 

6. Conclusion 

 FA and GA provide optimization methods that can be applied to a route optimization of 

fishing vessels toward fishing locations. Certain parameters, such as weather, wave height, and 

distance to the FAD position (FAP), are major considerations in determining an efficient and 

profitable FAP. A route optimization using GA is more complex than FA. This is because there 

are several operations such as crossover and mutation, resulting in the best generation for each 

iteration. Based on the simulation results, FA faster computation than GA. But the accuracy of 

GA is better than the FA. Referring to the results of performance evaluation of both methods, it 

is necessary to further investigate about a movement of fishing vessel, use of fuel/energy and 

the impact for the environment, thus the target of optimization of the route is achieved, i.e. 

efficiency. 
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