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Abstract: This paper presents the design of triple stages cascoded low noise amplifier
using an inductive drain feedback (IDF) technique which operates at frequency 5.8 GHz
for WiMAX application. The triple stages cascoded LNA was designed using the
inductive drain feedback, inductive generation to the source, and the T-network at the
input and output terminal as a matching technique. This LNA produced a gain (S;;) of
79.16 dB and the noise figure (NF) of 0.71 dB. The output reflection (Sy,), input
reflection (S;;) and return loss (S),) are -12.56, -11.96 dB and -100.22 dB respectively.
The measured 3dB bandwidth of 1.76 GHz has been achieved. The input sensitivity is -
92 dBm exceeded the standards required by the IEEE 802.16. The amplifier it is
implemented using superHEMT FHX76LP transistor devices. The designed circuit is
simulated with Ansoft Designer SV.
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1. Introduction

Heightened demand for broadband services by consumers at this point has become a
growing trend in every country in this world. As it is known that the era before the advent of
broadband, many countries using digital lines (DSL), fiber optic, cable modem and Ethernet as
a resolution to provide high-speed broadband [1]. In reality, it is not a good technological
solution for most telecommunications companies forced to suffer the high cost and difficult to
maintenance on the wired net, especially in rural and distant regions. Therefore, the technology
of broadband wireless access has been introduced where it is more flexible, more efficient and
more affordable to users. Broadband wireless access technology the most popular at the
moment is WiMAX. Using IEE 802. 16 standard, which enables users to access wireless
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Figure 1. WiMAX Deployment Scenarios [4]
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rates (70Mbps) compared to 802.11a to provide data rates only 54 Mbps up to several hundred
meters, EDGE with only transfer data rates until 384 kbps to a few kilometers and CDMA2000
broadband anywhere, anytime and on any device that is installed with wireless devices [2].
WiMAX technology has more capacity (user), large area coverage (50 km) and delivers high to
2 Mbps for a few kilometersWiMAX technology has advantages in terms of high mobility
performance and is one of the most user-friendly technology [3].WiMAX deployment
scenarios are shown in Figure 1.

The frequency spectrum of mobile WiMAX technology in NLOS applications is around 2 —
6 GHz, where the 2.3 GHz, 2.5 GHz and 3.5 GHz are dedicated for licensed spectrum while the
3.65 GHz and 5.8 GHz are dedicated for unlicensed spectrum. In this research the preferred
concentration of the unlicensed spectrum at 5.8 GHz frequency. In this research the preferred
concentration of the unlicensed spectrum at 5.8 GHz frequency. In the WiMAX receiver
configureuration, RF front-end is designed with extensive bandwidth, low interference, high
gain and sensitivity performance ensure a reliable receiving performance. The main
component in the RF front-end is a low-noise amplifier (LNA). The low noise amplifier in the
first stage will dominate the noise, gain, and the sensitivity performance of the RF front-end
receiver. Therefore, to guarantee the implementation of the best front-back RF, LNA should
be designed to optimize at the input or output impedance matching, high gain, low noise, and
unconditional stability in a predetermined band.

Low noise amplifier (LNA) is the core blocks in the RF front-end receiver because it will
strengthen and reduce the noise figureure of the received signal from the antenna to the signal
level that can be accepted by the receiver system. Selection, the correct LNA technology and
timely in RF front-end receiver, is a way to get the cost-efficient and manageable. In selecting
LNA technology, there are several factors that to be considered such as the selected device
capabilities, the number of signal content to be integrated and the application performance
requirements.

Typically, most of the researchers are focusing on SiGe (BiCMOS) or CMOS transistor in
designing LNAs. However, most of the commercial LNAs are designed using the GaAs-
PHEMT. The use of GaAs-PHEMT devices in commercial LNAs are due to the noise figureure
produced by these devices that can be reduced up to 0.5 dB. Thus, designers must find the
technology that is suitable for applications to be developed to ensure a balance between the
technology performances that can be obtained. However, this technology is still uncertain due
to the difference in terms of architecture, specification and circuit designers themselves [5]. In
this research, LNA for WiMAX applications designed using PHEMT technology and focus on
the new structure. Eudyna Devices Inc FHX76LP that was found to have excellent stability at
the required frequency range 5.3-6.2 GHz. This is the transistor PHEMT and provides a high
gain 18 dB at 6 GHz and a low noise figureure 0.4 dB at 12 GHz. Transistor that uses low
current of 10 mA with the drain-source voltage of 2 volts. Therefore, FHX76LP has been
selected to design the LNA.

In this research, we proposed triple stages cascaded LNA using topologies inductive drain
feedback to the drain, inductive source degenerated and the T matching network at the input
and output ports. This topology is designed to obtain more than 70 dB gain, and noise
figureure is less than 3dB as well as maintaining in more than 1 GHz bandwidth. The proposed
architecture for the configureuration RF front-end receiver a WiMAX application at 5.8 GHz
as shown in Figure 2. Development of LNA in the front-end receiver is the primary focus of
this research.

In this configuration, it consists of triple stages cascoded LNA using the inductive drain
feedback combined with source inductive degeneration, inductive RF choke placed between
the two cascoded LNA amplifier and the input and output ports using the T-matching network.
Adding the inductive drain feedback at the cascoded topology has provided high gain, wider
bandwidth, better stability, higher reverse isolation and provide the best matching at the input
or output terminal, that it also helps in increasing the bandwidth. While the addition of an
inductive source generation at cascoded LNA topology enhances the bandwidth, stability and

176



Design of Triple-Stage Cascoded LNA Amplifiers using Inductive Drain Feedback (IDF)

improve the input-output matching capabilities. The use of T-matching on this configuration
also has helped reduce the reverse isolation and noise figure.

Figure 2. RF front-end receiver architecture using a triple stagecascodedLNA configuration

2. LNA Theory

LNA is used to amplify the signal received from the transmitter to a level that can be
accepted and only a slight increase in noise. It is the most critical part of the RF front-end
receiver, especially if it is referred to in receiver performance. A variety of LNA circuit designs
using different configuration was proposed by the researcher prior to use on the application of
wireless broadband. The selection of the right combination of design LNA circuit necessary to
obtain optimal designs. In this section, the design and optimization techniques for LNA will be
reviewed and clarified.

A. Common Source (CS), Common Gate(CG) and Cascode Configuration

A designer who specializes LNA will choose the correct circuit for use in a particular
application. The selection of the proper circuit for LNA design is very important to allow
players of telecommunication systems to provide coverage in the desired area. In addition, the
circuit can be designed only to meet some characteristics of LNA while others can be ignored.
This is important for designers to reduce the effects of environmental variables as well as
getting the best trade-off between characteristics to optimize receiver sensitivity, selectivity
and maintain the integrity of the data.

Figure 3. (a) Common-source (CS), (b) Common-gate (CG) and (c¢) Cascode Topology

Figure 3 shows Common-source (CS), Common-gate (CG) and Cascode topology are
commonly used in LNA design. The use of (CS) topology in LNA circuit will increase the gain
and can produce good noise performance [6]. When an inductor is placed on the source of a
(CS) stage, then the inductive source will be degenerated. The inductively degenerated (CS)
LNA is widely used due to the superior noise performance, wider bandwidth with large power
consumption [7], but it is poor in terms of reverse isolation. Upon the occurrence of the
technological revolution of the last which requires a larger wideband operation to enable
various advanced applications used by consumers using the (CS) topology, the LC ladder
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technique used at the input LNA to provide the required input impedance over the bandwidth
used [8]. For (CG) LNA topology usually can achieve wideband input impedance matching
and the best input-output isolation. However, it has a high noise figure [9]. (CG) topology can
also lower power consumption, robust again parasitic and stabilize the LNA circuit [6]. To
overcome the noise performance when using (CG) LNA, the use of capacitive cross-coupling
technique was introduced to reduce the noise generated at the common-gate transistor output
[10]. This method can overcome the problem of weak noise performance of the LNA. Cascode
topology is a common method used to design the LNA. Cascoded topology more popular and
often used by designers LNA due to this technique can produce higher gain, high reverse
isolation and low power consumption [11]. The cascode LNA with inductive source
degeneration shown in Figure 3 (c) has been used extensively and arguably the best topology
because it is easier to achieve input matching for higher gain and noise figure compared to
using other methods topology. The inhibition of the parasitic capacitances of the input
transistor also improves the high-frequency performance of the amplifier. In addition, a
combined two-transistors (FETS) in cascode topology increases the bandwidth of the amplifier
and reduce the impression of Miller [12]. The cascoded LNA is also suitable for narrowband
applications as there is in (CS) topology. However, with the improvement of this technique by
using the feedback method allows cascaded stage is used in multiband or wideband application
[13]. There are also other methods used to obtain the wideband application in cascaded
configuration with the addition of the LC matching network at the input [8]. Table 1 shows the
comparison in general based on the most relevant considerations in the design of LNA

topology.

Table 1. Comparison between Three LNA Topology

Characteristic Cascoded Common-source Common-gate
Gain Superior Average Inferior
Stability Higher Need compensation Higher
Noise Figure Slightly higher than Inferior Increased When

CS frequency rise
Bandwidth Broad Narrow Slightly (l::\rsoad than
Sensitivity, Power
supply, = Component Lesser Greater Lesser
Tolerance
Reverse Isolation High Low High
Linearity Potentially highest Average High

From Table 1 we can deduce, cascoded amplifier is the best among the three topologies
which was designed by the researcher earlier due to meet all the requirements and the most
versatile of all the important characteristics for LNA design. Cascoded topology also provides
a more stable gain over a wide bandwidth with little trade-offs in noise figure performance and
design complexity. (CS) topology can produce the best in lower noise figure. It also has a
greater advantage in sensitivity to bias, component tolerances, and temperature. The (CG)
topology also has low noise figure at low frequencies but will increase rapidly with the higher
frequency signals. To improve the noise figure, gain and stability at high frequencies due to the
high drain-source capacitance in common-gate implementation requires the use of inductive
feedback in the circuit.

B. LNA Characteristic
B.1. Noise Figure

Noise optimization is the most critical step and should be given serious consideration in the
design of LNA amplifiers. However, it can be simplified when LNA amplifier designers use
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the circles of the constant noise figure and constant gain circles to select usable trade-off
between noise figure and gain. In general noise figure of 2-port transistor has a minimum
value of the specified admittance is given by the equation (1), [14]:

R
_ N _ 2
F=Fhin* Gg 1Ys —Yopt | (1)
Where
Y, = G; + jB; is the source admittance presented to the
transistor.

Yopt = Gopt + jBopt is the optimum source admittance.
Ry is the equivalent noise resistance of the transistor.
G is the real part of the source admittance

Ry to indicate when the condition of Ys # Y, happen will cause a sudden increase in noise
figure. Usually at the same smith chart would plot stability circles, gain circles, noise circles,
and input impedance. Yy is usually chosen in between the points as a compromise between
noise and gain. However, as Figure 4, Y, and Yi, can be changed and move around when
there is a change in the size of transistors and add source inductance. Therefore, the inductive
degeneration can be used in conjunction with transistor sizing will cause Y, and Yin move
closer together, allowing it to meet the low noise figure, high gain and excellent match input
amplifier designed [15]. For low noise transistors, manufacturers usually provide F;;,, RN and
Yo by frequencies. N defined by the formula for desired noise figure, shown in equation (2):

[.-I..° F-F.
N=| s opt2| =F me‘l‘*‘ropﬂz
1-|Tg | 4R\ /2,

2

G _% kQhm

Figure 4. Optimize I's for a LNA using inductive degeneration and transistor design
B.2. Stability and Power Gain

Stability is one of the important characteristics in designing LNA amplifiers. Determination
of stability is essential to avoid oscillation occurs at the operating frequency. The oscillation is
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possible if either input or output port impedance has produced a negative real part. This would
imply that T';;>1 or [y, >1. This because I';, and T'out depend on the source and the load
matching network. However, the stability of the amplifier depends on I'y and I'L as presented
as matching network.If low noise amplifiers is not stable, it would become useless since major
properties including bandwidth, gain, noise, linearity, DC power consumption and impedance
matching can be significantly degraded. For this design, there is a good stability
(unconditionally stable) by employing the signal flow theory and S-parameter [15].
Alternatively, the amplifier will be unconditionally stable, when the stability factor (K) and
delta factor (A) following necessary and sufficient conditions are met:

- IS0 = 5u + |
2|512521|

|2

>1 3)
and

|A|:|Suszz_ S12521|<1 (4)

(K>1)and (| A|<1)is condition requirement for unconditional stability.

The Power Gain of 2-port networks with circuit impedance or load impedance of the power
amplifier are represented with scattering coefficient classified into Available Power Gain, Power
Transducer Gain and Operating Power Gain [16].

Operating power gain (Gp), is the ratio between the power delivered to the load (P.) and the
power input (P;,) to the network. The Operating Power Gain can be specified as an equation

(5), [14]:

2 2
6o P loalloinp) o
Po (=0 J1 - Snr |

Available power gain (G4) is the ratio between the power available from the network
(P.wn)and the power available from the source (P,y) as shown in equation (6),[14] :

GA — Pavn _ 1_|FS |2 |S2l ‘2
Pas  [1-8,T

1
[1-S,,T (6)

Transducer power gain (Gr) is the ratio between the power delivered to the load (P) and
the power available from the source (P;,) as shown in equation (7), [14] :

O S 711 Ul LY 0 U LYW )
P 1(1=S,,Ts)(1~ S5 ) — (5125 Fs L) 0

3. Design of Tripple Stage Cascoded Using Inductive Drain Feedback (IDF) Technique

In an effort to produce a low noise amplifier with low noise figure, wide bandwidth, high
gain, input and output matching circuits can reduce reflections unwanted signals and
unconditional stability , we suggest the new configuration using triple stage cascoded LNA
using inductive feedback to drain FET.
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The proposed configuration diagram triple stage cascoded LNA is shown in Figure 5.

To Terminal S IMN Cascoded OMN IMN
Source é LNA ——
. Cascoded
DC Bias LNA
To  Terminal é
Loadcascoded OMN Cascoded IMN OMN
INA é LNA veo

Figure 5. Configuration diagram Triple stage LNA cascoded LNA

The targeted S-parameter specification for the triple stage LNA cascoded LNA amplifier is
shown in Table 2.

Table 2. Targeted S-Parameters for a triple stage cascoded LNA amplifier

S- parameter Triple stage LNA
cascoded LNA

Input reflection Sy; (dB) <-10dB
Return Loss Sy, (dB) <-10dB
Forward Transfer S, >+70 dB
(dB)
Output Reflection loss <-10dB
S» (dB)
Noise Figure (dB) <3dB
Stability (K) K>1
Bandwidth (MHz) >1000

Design configuration using a triple stage cascoded LNA and construction specifications in
accordance with the specifications in Table 2. The circuit designed using PHEMT FHX76LP
Transistor. S-parameters for PHEMT is shown in Table 3, where the parameters were obtained
at Vpp = 2V and Ipg = 10mA of bias set at PHEMT.

Table 3.S-parameter from Transistor PHEMT FHX76LP datasheet

Frequency S Si2 Sy S»
GHz

5.8 GHz 0.712 0.065 8.994 0.237
Angle -86.54 3388 178.66 -10.46
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Figure 6. Complete triple stage cascoded LNA using inductive feedback

Low noise amplifiers overall performance can be determined by calculation or simulation using Ansoft 's designer SV software at transducer gain,
noise figure and also on the input and output standing wave ratios, VSWRy and VSWRout. The optimum 'optand I'L were obtained as Topt =21 +
j48.02 and I'L = 79.90-j7.299 for cascoded LNA.

Figure 6 shows the complete schematic triple stage cascoded LNA using IDF technique. This configuration has been designed with the new technique
and topology. In this stage, LNA has been designed using inductive feedback Li¢, Ly and L; at drain M,, My and Mg respectively. L;o, Ly and Lj,
inductive generation source connected to the source of M;, M3 and Ms. In addition, the L;s, Lys and L;s inductive RF choke placed between the source
M, to drain on the M;, M, to drain M3 and Mg to drain on the Ms. This topology also used the T-matching network at the input and output impedance

182



Design of Triple-Stage Cascoded LNA Amplifiers using Inductive Drain Feedback (IDF)

(input impedance matching component at at Ly, L5, Cy1, Lyy, Ly, Co1 Lsg, L3y, C3; and output impedance matching component at Lg, Lo, Cis, Lag, Lyo,
Cx,Lss, L3y, C3;). By using Ansoft Designer SV, Smith Chart matching technique, the components of the amplifier are as shown in Table 4.

Table 4. Triple-Stage LNA Cascoded LNA Amplifier parameters

Components
15t Stage Ll()(l'lH) L] ](I'IH) le(nH) L]3(1’1H) L|4(1'1H) L15(1'1H) L]G(HH) L]7(1’1H) ng(nH) L]g(l’lH) C] 1(pF) C]z(pF)
LNA
Value 0.064 1.350 1.020 0.697 0.367 1.160 9.000 1.366 0.658 1.369 0.100 0.600

2" Stage Lyo(nH) Ly(nH) LypmH) Ly(mH) Lyy(nH) Lys(nH)  Ly(nH) Loy(nH)  Lys(nH)  Ly(nH)  Cu(pF)  Cu(pF)
LNA
Value 0.064 1.350 1.020 0.697 0.337 1.160 9.000 1.366 0.658 1.346 0.100 0.550

Cascoded Lso(nH) L;i(nH) Ls(nH) Lss(nH) Li(nH) Lis(nH)  Lig(nH)  Lss(nH)  Lig(nH)  Lio(nH)  Csi(pF)  Csa(pF)
LNA
Value 0.064 1.320 1.279 0.658 0.283 1.139 9.56 1.372 0.658 0.746 0.500 0.800

From the architecture topology stated in the previous section, a triple stage cascoded LNA using IDF technique is designed to produce high gain, low
noise figure, unconditional stability at specific bands and widen the bandwidth. However, this condition is strongly influenced by the passive
components and topologies used at every stage LNA amplifiers. In this research, the proposed LNA is composed of three stages as shown in Figure. 6.
LNA circuit used at each stage using the same topology consists of inductive drain feedback combined with inductive source degeneration, inductive RF
choke placed between the two LNA amplifiers and the input and output ports using the T-matching network. Each stage is connected using the
interstage matching Lg and Cg.

The use of inductive drain feedback L¢ for the first stage, Ly in the second stage and L in the third stage at the cascoded topology has produced
high-gain, extended bandwidth, better stability and help in producing the best impedance at the input and output terminals.This is shown in Figure. 7 and
Figure 8. In Figure 7, the change in the inductive L4, Ly and L3¢ from 1nH to 10 nHvaries the gain to increase significantly from 64dB to 80 dB while
the impedance matching at the input (S;;) and output terminals (S,,) are changes to good impedance from -11dB to - 13 dB. While in Figure 8, shown
with the use of inductive drain feedback on the three stage have also resulted in the LNA amplifiers are unconditionally stability when changing the
value of the three inductive from InH to 10nH has resulted in the stability of the meet at the same stability of 5.08. This will enable greater
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changes in bandwidth from 1.37 GHz to 1.8 GHz. Adding the inductive drain feedback at the
cascoded topology has provided high gain, wider bandwidth, better stability, higher reverse
isolation and provide the best matching at the input or output terminal, that it also helps in
increasing the bandwidth.
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In addition, the topology also uses an inductive source generation L;y, L,y and Lj in the
three stage cascoded LNA has enabled designers to improve and control the impedance
matching as shown in Figure 9. Whereas in the inductive source degeneration changed to a
smaller value, which changes the W (mm) from 2mm to 30mm resulted in pure impedance
occurs at the input and output matching and helps in getting the input and output of the optimal
matching. This causes the input impedance (S;;) changes from -3.08 dB to -11.96 dB. The
output impedance (S,;) matching changes from 7.22 dB to -12.56 dB. These changes have
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improved input-output matching in LNA amplifiers capabilities and reducing the reflection loss
at the circuit. When this condition occurs, it enhances the bandwidth and stability as shown in
Figure 9.

The use of T-matching on this configuration also has helped reduce the reverse isolation
and noise figure. Especially in the first stage cascoded LNA T-matching network at the input
will control and determine the overall noise figure in the RF front-end receiver. This is shown
in Figure 10 and Figure 11, where a change in the passive component values at L, L1, and Cy,
will affect the noise figure LNA amplifiers. At the T-matching in the second or third stage had
no significant effect on the noise figure when the passive component in the T - matching
altered.

In this case, we have chosen the value of Ci; from O0.1pF up IpF causing noise figure
varies from 0.71dB to 2.23 dB. However, the LNA specifications amplifiers to be built require
the S;; be smaller than 10 dB a trade-off needs to be done. A value component C;; between
0.1 pF will be chosen. Where it has, been producing noise figure LNA receiver to 0.71 dB.In
addition, passive inductive component L;; and L, also have a significant impact on noise
figure to the overall system. Where changes in the value of microstrip L;; and L, from Imm to
7mm has resulted in the noise figure, changed from 0.76 dB to 0.71 dB and 0.66 dB to 0.71 dB
respectively. Then the noise figure willincrease back if the inductive L;;extends beyond 7mm.
This can be demonstrated by Figure 11.
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Figure 11. Affect changes value the L;; and L, to the overall noise figure

4. Results

This section demonstrates the measurement resultfor triple stages cascoded LNA with
inductive drain feedback used at a frequency of 5.8 GHz.It is implemented in a SuperHEMT
technology. The design based on the topology shown in Figure 6. Table 5 shows the summary
of the measured performance and comparison for different topologies of the LNA amplifier for
researchers at recently reported.The recorded result plot for gain S,;, input reflection loss S,
output reflection loss S,, and return loss Sy, of the LNA are shown in Figure 12 (a). While at
Figure 12 (b) and 12 (c) shows noise figure and stability of the triple cascoded LNA
amplifier. At the Figure 12 (a), the input reflection S;; is -11.96 dB while the output reflection
Sy, is -12.56 dB. Acquisition of S;; and S,; is less than -10 dB can produce the best impedance
matching, which shows the effectiveness of using inductive degeneration and T-matching
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network at the LNA amplifier circuit. In addition, as shown in Figure 12 (a), use of cascoded
topology with inductive drain feedback has resulted in transfer forward gain S,; reaches 79.16
dB at 5.8 GHz. The return loss S, (reverse isolation) gives a very low value to -100.22 dB.
The low values S;, have provided advantages in reducing LO leakage substantially which
arises from capacitive paths and substrate coupling. In Figure. 12 (b) overall noise figure (NF)
is 0.71 dB, which is the best result reported among the published LNAs in SuperHEMT and
0.18um technology especially in the high frequency band.The stability K is 5.8 as shown in
Figure 12 (c). . The value of stability obtained is greater than 1, and the LNA amplifiers are
currently in a state of unconditionally stable.From Figure 12 (a), it is observed that, the 3dB
bandwidth of around 1.76 GHz was obtained and thus complies with the targeted result of
more than 1 GHz. All the result values are within the design specification, as stated in Table 2.

Table 5. Comparison performance summary of the different topology of the LNA amplifier:
published and this work
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5. Conclusions

The feasibility of a newly proposed triple stage cascoded LNA by using inductive feedback
technique, inductive source generation, T-matching and inductive RF choke for improving
noise performance, achieving good input matching, wider the bandwidth and high power gain
have been demonstrated in this paper. The circuit consisted of three stages, whereby design
issues of noise, gain, stability and bandwidth were almost separated into each stage; the first
stage contributed to reduce the noise figure and the second stage to improve the LNA’s
stability and the third stage to control the bandwidth. While inductive drain feedback at each
stage will control and improve the gain. The proposed LNA provides the gain (S,;) was 79.16
dB, and the 3-dB bandwidth was 1.76 GHz. LNA performance can be further enhanced by
strengthening input and output impedance matching of the return loss (S,,), output reflection
loss (Sy) and input reflection loss (S;;) of the respective value are -100.22 dB, -12.56 dB and
-11.96 dB.Recorded result for stability and noise figure (NF) cascoded LNA amplifier
observed provide 5.08 and 0.71dB respectively. In conclusion, , it has been demonstrated that
by applying a triple stage cascoded LNA amplifier, a minimum noise figure, higher gain, and
wider the bandwidth which is the best measurement reported among the published WiMAX
LNAs.
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