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 Abstract: This work investigates Automatic Generation Control and optimal gain 

setting of conventional controller for multi area interconnected reheat thermal power 

systems. Conventional Proportional – integral – Derivative (PID) controller is used for 

this investigation. Optimization of controller gain values are tuned by Integral Time 

Absolute Error (ITAE) traditional approach.  The proposed work presents new Artificial 

Intelligence for tuning of controller gain values. The effectiveness and robustness of 

proposed technique is investigated with one percent step load perturbation in either area 

of the system with and without considering appropriate Generate Rate Constraint 

(GRC). Time domain analysis is used for the performance comparison and analysis for 

this work. Finally, simulation result reveals that new proposed AI based controller 

provide more superior response, when compared to conventional controller with and 

without considering the effect of non-linearity.  

 

Keywords: Automatic Generation Control (AGC), Ant Colony Optimization, 

Interconnected power systems, Performance indices, Proportional –Integral-Derivative 

(PID) controller. 

 

1. Introduction 

 The size and complexity of power systems are increases due to large power surplus. Which 

leads interconnection between power generation units. Power surplus is varied every instant of 

time and it will affect the real and reactive power of the system. Changes in real power causes 

effects in system frequency and tie power flow between interconnected units [12-14]. But 

changes in reactive power mainly affect the magnitude of voltage across the generator 

terminals. In order to conquer above said problem, LFC control scheme is introduce to control 

and regulate the real power of system. LFC plays major role, to keep the frequency and tie line 

power flow fluctuation within the nominal or specified limit during normal operation and small 

load perturbation in either area of the system.  

 From the fast several years many research control schemes are proposed and investigations 

are made to regulate the operation of power system [1-11]. The proposed schemes and 

investigations are incorporating various types of controller with different optimization 

techniques. Different types of controllers are used in the LFC, such as classical, optimal, 

artificial neural network [10,11], fuzzy logic[7], genetic algorithm [8], etc. Different 

optimization techniques are used to select the optimal gain values. Such as traditional 

approach, particle swarm optimization, Bee colony, ant colony optimization, bacterial foraging 

optimization, etc. In this investigation most commonly used industrial PI controller is used and 

gain values are optimized using traditional approach optimization technique. Traditional 

optimization techniques are Integral Time Square Error (ITSE), Integral Square Error (ISE), 

Integral Time Absolute Error (ITAE) and Integral Absolute Error (IAE) [6]. Here ITAE 

optimization technique is used for the selection of controller gain. During optimization process  
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one parameter is optimized at a time, by keeping other parameters at fixed value. Similarly all 

the parameters are optimized by repeating this procedure. But it will take more time to 

optimize and result is differing from evolutionary optimization techniques. In order to 

overcome these problems and keep the operation of system in steady condition is most 

essential with implementing new efficient optimization technique. 

 Artificial Bee Colony (ABC) algorithm is implemented in two area interconnected reheat 

thermal power for the purpose tuning PI and PID controller with different cost functions and 

performance is compared with PSO techniques [2]. In [3] author used Bacterial Foraging 

Optimization (BFO) for tuning on integral controller for LFC in a two area power system. The 

three area AGC hydro thermal power systems with IDD controller is implemented in [3] and 

parameters of I, PI, PID , IDD and fuzzy IDD controllers are optimized with Bacterial Foraging 

for finding suitable controller. In [4]BFO algorithm is implemented in two area LFC of thermal 

power system for tuning of PI controller and response is compared with GA based PI 

controller. Stochastic Particle Swarm Optimization technique is introduced two area thermal 

power system for the purpose of tuning PID controller parameter and it is compared with 

conventional PID controller [5]. Another AI technique, Ant Colony Optimization (ACO) is 

used in two area hydro thermal power system for optimizing PID controller with and without 

considering the effect of non-linearity and response is compared with different cost functions 

[1, 9]. Recently many bio-inspired algorithms are developed and successfully implemented in 

LFC/AGC of single/Multi-area inter connected power system [17-23]. The algorithms are 

Cuckoo Search Algorithm (CSA), Firefly Algorithm (FA), Teacher learning Based 

Optimization (TLBO), Beta Wavelet Neural Network (BWNN) approach, hybrid Particle 

Swarm Optimization-Pattern Search (hPSO-PS) approach. Cuckoo Search Algorithm (CSA) 

was presented  by Chaine and Tripathy [19], for tuning of integral controller gain values and 

Super conducting Magnetic Energy Storage (SMES) unit parameters. Sahu et al [20] presents  

 

 
Figure 1. Transfer function model of three area interconnected thermal power systems with 

GRC Non-linearity 
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hybrid Firefly Algorithm-Pattern Search (hFA-PS) for tuning PI/PID controller gain values in 

automatic generation control of multi-area non-reheat thermal power system. Fuzzy PID 

controller gain values in multi-area non reheat thermal power system was designed and 

presented by Sahu et al [21] and performance was compared with Genetic Algorithm (GA), 

Pattern Search (PS). Proportional Integral Plus (PI+) controller was designed by Francis and 

Chidambaram [22], using BWNN technique for load frequency control of interconnected 

power system with Redox Flow Battery and hydrogen electrolyser energy storage units. Load 

frequency control (LFC) of two area non reheat thermal power system was presented by Sahu 

et al [23] with fuzzy Proportional Integral (PI) controller and the controller gain values are 

optimized by using hPSO-PS optimization technique. The performance of proposed technique 

was compared with GA-PI controller, Bacterial Foraging Optimization Algorithm, Ziegler 

Nichols (ZN) and Differential Evolution (DE) algorithm based controller performance.   

 In this work, an efficient AI based soft computing ACO is used for tuning the parameters of 

Proportional-Integral-Derivative (PID) controller. In the view of above discussion, the 

following are the main objectives of the proposed work: 

 

 0ptimization of conventional PID controller in three area thermal power system is 

obtained using traditional approach with Integra Time Absolute Error (ITAE) cost 

function, with and without considering non-linearity effects in all three areas. 

 The efficient Artificial Intelligence based ACO technique is designed and implemented in 

the three area interconnected reheat thermal power systems for tuning of PID controller 

gain values. 

 Dynamic performance of conventional PID controller is compared with proposed 

Artificial Intelligence technique. 

 The robustness and effectiveness of proposed   technique is tested by the use of one 

percent step load perturbation in area 1 and considering the appropriate GRC non-

linearity in all areas. 

 

2. Power system modeling 

 A MATLAB simulink model for AGC of a three area thermal power system with equal size 

of area 1: 2000MW, area 2:2000MW and area 3: 2000MW is designed for this work as shown 

in figure 1 [6,7]. All three areas are provided with single reheat turbine and interconnected 

through AC tie line. Generation Rate Constraint (GRC) non-linearity is considered in all the 

three areas. MATLAB 7.5(R2007b) has been used to obtain dynamic response for frequency 

deviations, tie line power flow out deviations and area control error in all areas. The optimal 

values of Proportional-Integral - Derivative controllers are tuned by using both conventional 

and artificial intelligence technique, Integral Time Absolute time error cost function is used for 

controller tuning purpose. The system dynamic performance is evaluated by considering one 

percent step load perturbation in area1, with and without considering the effect in all areas. 

 

A. Generation Rate Constraint 

 In power plants having steam turbines [7], power generation can change within the 

specified maximum rate only. The generation rate for reheat unit quit low. The generation rate 

for most reheat unit is around 3%/min, some having the value between 5 to 10%/min. If 

Generation Rate Constraints (GRC) is not included means, the system is ready to compensate 

the large momentary disturbance. This results in wear and tear of the controller. When GRC is 

considered in the system, it becomes non linear and linear control techniques are not suitable 

for optimizing the controller gain. The GRC is considered in both areas of the systems, is to 

add limiters to the governors [3],[5]. The maximum rate of valve opening or closing speed is 

controlled by the limiter. Tsg gmax is the power rate limit imposed by valve or gate control. 

 max

.
|| gEY   (1) 
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3. Design of Proportional- Integral-Derivative Controller 

 The intention of implementing controller in power system is, to keep the system operation 

in stable and delivery of good quality power to the consumers. Proportional controller reduce 

the peak overshoot in the system responses and integral controller reduce steady state error into 

zero and the stability of the system is increased by using derivative controller.  Simulink model 

of  conventional PID controller is shown in Figure 2. The main aspire of load frequency control  

is to generate proper control signal, which is having the capability to keep the system 

parameter within the specified or nominal value [15]. The value of control signal generated by 

the controller can be written as follows: 

   )()()()( teKdtteKteKtu dip
 (2) 

 
Figure 2. Structure of PID controller 

 

 Hence integral time absolute error performance cost function is used for optimal 

conventional controllers gain settings design[6]. A cost function 

 



0

|}{| dtPftJ jtieii
 (3) 

is used to obtain optimum gain settings of controller gain Kp , Ki. and Kd 

 

 
 

Figure 3. Cost function vs Kd without GRC 

 

 Figures 3 and 4 shows variations of cost function with various values of derivative 

controller gain. The values of cost functions are first decreases with increasing values of 

derivative gain and cost function value is decreases further increasing value of controller gain. 

It is seen that derivative gain Kd= 0.03 and Kd =0.15 are the optimal values of controller gain 

with and without considering non-linearity effect respectively. 
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Table 1. gain values of conventional PID controller with and without non-linearity 

 

Conventional PID controller gain values 

Integral Gain Ki Proportional Gain Kp Derivative gain Kd 

Without Non-linearity 0.58 0.06 0.15 

With Non- linearity 0.37 0.006 0.3 

 

 

 
Figure 4. Cost function vs Kd considering GRC 

 

4. Ant colony optimization 

 In this work new general purpose natural metaphor Ant Colony Optimization technique is 

used for tackling different combinatorial optimization problems. Based on the pheromone 

information, real ants having the capability to find the path between food source and their nest, 

via pheromones (aromatic substances). When ant start searching the food initially all ants 

explore the surroundings of their nest, in a random manner. Ant finds the food source very 

quickly and it evaluate the quantity and quality of the food source.  During return trip , it 

carries some amount of food to the nest and it deposit pheromone chemical on their path. The 

quantity deposited chemical in the path is based on the quality of the food and it will guide for 

other ants to find the food source. The shortest path between their nest and food source can be 

identified through indirect communication of pheromone chemicals. Based on this types of real 

ant characteristics , it is useful for developing new artificial Ant Colony techniques for solving 

many discrete optimization problem. Ant Colony Optimization (ACO) initially proposed by 

Marco Dorigo in 1992 in his Ph.D thesis.  

 

The transition probability from town i and j for the kth ant as follows 
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 The value of pheromone versus heuristic information ij   is given by 
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ij
d

1
  (5)

   

 The global updating rule is implemented in ant system as follows, where all ants starts their 

tours, pheromone is deposited and updated on all edges based on 
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Where Pij – Probability between the town i and j 

ij
- pheromone associated with the edge joining cities i and j 

dij – distance between cities i and j 

Q – constant 

Lk – length of the tour performed by Kth ant 

α, β – constant that find the relative time between pheromone and heuristic values on 

the decision of the ant  

ρ – Evaporation rate 

  

 The flow chart of Ant Colony Optimization (ACO) technique is shown in figure 5. The 

ACO optimization technique has three main phases in the PID controller tuning process. The 

first phase is initialization of algorithm parameters ( Number of ants, Pheromone, evaporation 

parameter and number of iterations), second phase is building ant solution and final phase is 

updating pheromone concentration. In the PID controller the optimized parameters are, 

Proportional gain (Kp), Integral time constant (Ti), Derivative time constant (Td).  The 

transition probability between I and j noe is obtained by yhe eqn.(4) and   pheromone updation 

during ant tour is obtained by using the formula Eqn. (6). 

 

 
Figure 5. Flow chart of ACO technique 
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 Table 2. Gain values of ACO PID controller with and without non-linearity 

 

Conventional controller gain values 

Integral Gain Ki Proportional Gain Kp 
Derivative gain 

Kd 

Ki1 Ki2 Ki3 Kp1 Kp2 Kp3 Kd1 Kd2 Kd3 

Without Non-

linearity 
8.8 8.1 8.8 7.6 9 9.3 1.9 0.9 2 

Without 

linearity 
5.8 8.7 3.2 9.8 8.7 7 1.1 3.2 4 

 

 The optimal gain values of PID controller using Ant Colony Optimization technique with 

Integral Time Absolute Error (ITAE) cost function is given in Table 2.  

 

5. Tests and Simulation Results 

  

 
Figure 6. Controlled response without GRC non-linearity unit (delF1) 

 

 

 
Figure 7. Controlled response without GRC non-linearity unit (delF2) 

 

 Matlab software is used for the simulation purpose. The design of investigated power 

system model is discussed in section II, suitable controller is designed and proposed technique 
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is discussed in section III and IV respectively. In order to check the quality and effectiveness of 

the proposed controller is tested with 1% of step load perturbation in thermal area 1, it is 

compared with conventional PID controller. The existing and proposed technique based 

controller gain values are given in the table I and II.  Figures 6-14 illustrates the simulation 

comparison of conventional PID and ACO based PID controller response of AGC system 

without GRC non-linearity and Figures 15-23 illustrates the simulation comparison of 

conventional PID and ACO based PID controller with the presence of GRC non-linearity in all 

the areas. It is clearly shows that the proposed optimization (ACO) technique reduces the 

system parameters (settling time, overshoot and damping oscillations) very well compared to 

conventional technique. 

 

 

 
Figure 8. Controlled response without GRC non-linearity unit (delF3) 

 

 The frequency deviation comparisons of dynamic response of proposed and existing 

controllers are shown in figures 6-8. The domain parameters overshoots and settling times are 

noted and values are shown in table 3. The settling time, overshoot and damping oscillations of 

the proposed techniques based controller is less than existing controller without considering the 

GRC non-linearity in all the areas. 

 

 

 
Figure 9. Controlled response without GRC non-linearity unit (delPtie1) 
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Table 3. Maximum overshoots and settling times of the frequency deviations by using 

conventional PID and ACO PID controller without non-linearity effect 

 
PID controller with 

Conventional technique ACO technique 

Fig, No Response Peak overshoot 
Settling time 

 (Sec) 

Peak 

overshoot 

Settling time  

(Sec) 

6 delF1 -0.02018 20 -0.00736 11.47 

7 delF2 -0.01888 18.61 -0.00237 13 

8 delf3 -0.01888 18.77 -0.00269 10.8 

 

 

 
Figure 10. Controlled response without GRC non-linearity unit (delPtie2) 

 

 

 
Figure 11. Controlled response without GRC non-linearity unit (delPtie3) 

 

 The tie line power deviation comparisons of dynamic response of proposed and existing 

controllers are shown in figures 9-11. The domain parameters overshoots and settling times are 

noted and values are shown in the table 4. The settling time, overshoot and damping 

oscillations of the proposed techniques based controller is less than existing controller without 

considering the GRC non-linearity in all the areas. 
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Table 4. Maximum overshoots and settling times of the tie line power deviations by using 

conventional PID and ACO PID controller without non-linearity effect. 

 
PID controller with 

Conventional technique ACO technique 

Fig, No Response Peak overshoot 
Settling time 

(Sec) 
Peak overshoot Settling time (Sec) 

9 delPtie 1 -0.00952 27 -0.00181 17.75 

10 delPtie 2 0.00476 28 0.00088 16.4 

11 delPtie 3 0.004758 26 0.000927 14.76 

 

  

 
Figure 12. Controlled response without GRC non-linearity unit (ACE1) 

 

 

 
Figure 13. Controlled response without GRC non-linearity unit (ACE2) 
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Figure 14. Controlled response without GRC non-linearity unit (ACE3) 

 

 The Area Control Error deviation comparisons of dynamic response of proposed and 

existing controllers are shown in figures 12-14. The time domain parameters overshoots and 

settling times are noted and values are shown in the table 5. The settling time, overshoot and 

damping oscillations of the proposed techniques based controller is less than existing. 

Controller without considering the GRC non-linearity in all the areas. 

 

Table 5. Maximum overshoots and settling times of the area control error deviations by using 

conventional PID and ACO PID controller without non-linearity effect 

 
PID controller with 

Conventional technique ACO technique 

Fig, No Response 
Peak 

overshoot 

Settling time 

(Sec) 

Peak 

overshoot 

Settling time 

(Sec) 

12 ACE1 -0.0163 25 -0.00423 15 

13 ACE2 -0.00585 24 -0.00024 16 

14 ACE3 -0.00585 24 -0.00024 14 

 

 

 
Figure 15. Controlled response with GRC non-linearity unit (delF1) 
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Figure 16. Controlled response with GRC non-linearity unit (delF2) 

 

 

 
Figure 17. Controlled response with GRC non-linearity unit (delF3) 

 

 The frequency deviation comparisons of dynamic response of proposed and existing 

controllers are shown in figures. 15-17. The domain parameters overshoots and settling times 

are noted and values are shown in the table 6. The settling time and damping oscillations of the 

proposed techniques based controller is less than existing controller with considering proper 

GRC non-linearity in all the areas. But the overshoot value is reduced only considerable 

amount, when non-linearity effect is taken into the account. 

 

Table 6. Maximum overshoots and settling times of the frequency deviations by using 

conventional PID and ACO PID controller with  non-linearity effect 

 
PID controller with 

Conventional technique ACO technique 

Fig, No Response Peak overshoot 
Settling time 

(Sec) 
Peak overshoot 

Settling 

time (Sec) 

15 delF1 -0.02479 36.5 -0.02349 19.42 

16 delF2 -0.03336 33 -0.03117 21 

17 delf3 -0.03336 33 -0.03117 22 
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Figure 18. Controlled response with GRC non-linearity unit (delPtie1) 

 

 

 
Figure 19. Controlled response with GRC non-linearity unit (delPtie2) 

 

 

 
Figure 20. Controlled response with GRC non-linearity unit (delPtie3) 
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 The tie line power deviation comparisons of dynamic response of proposed and existing 

controllers are shown in figures 18-20. The domain parameters overshoots and settling times 

are noted and values are shown in the table 7. The settling time and damping oscillations of the 

proposed techniques based controller is less than existing controller with considering proper 

GRC non-linearity in all the areas. But the overshoot value is reduced only considerable 

amount, when non-linearity effect is taken into the account. 

 

Table 7. Maximum overshoots and settling times of the tie line power  deviations by using 

conventional and ACO PID controller with  non-linearity effect 

 
PID controller with 

Conventional technique ACO technique 

Fig, No Response Peak overshoot 
Settling time 

(Sec) 
Peak overshoot 

Settling time 

(Sec) 

18 delPtie 1 -0.01223 44 -0.01138 30 

19 delPtie 2 0.006116 44 0.01138 27 

20 delPtie 3 0.005746 44 0.007746 18 

 

 

 
Figure 21. Controlled response with GRC non-linearity unit (ACE1) 

 

 

 
Figure 22. Controlled response with GRC non-linearity unit (ACE2) 
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Figure 23. Controlled response with GRC non-linearity unit (ACE3) 

 

 The Area Control Error deviation comparisons of dynamic response of proposed and 

existing controllers are shown in figures 21-23. The domain parameters overshoots and settling 

times are noted and values are shown in the table 8. The settling time and damping oscillations 

of the proposed techniques based controller is less than existing controller with considering 

proper GRC non-linearity in all the areas. But the overshoot value is reduced only considerable 

amount, when non-linearity effect is taken into the account. 

 

Table 8. Maximum overshoots and settling times of the area control error deviations by using 

conventional PID and ACO PID controller with non-linearity effect 

 
PID controller with 

Conventional technique ACO technique 

Fig, 

No 
Response 

Peak 

overshoot 
Settling time (Sec) 

Peak 

overshoot 

Settling time 

(Sec) 

21 ACE1 -0.02101 40 -0.02067 24 

22 ACE2 -0.01194 36 -0.01337 25 

23 ACE3 -0.01164 36 -0.01303 15 

 

6. Conclusion 

 The Proportional-Integral-Derivative (PID) controller has been applied to the AGC equal 

three area interconnected power systems and optimal gain values are obtained by using 

conventional method with and without considering the effect of GRC non-linearities. The 

attempt has been successfully made to use Ant Colony Optimization technique, for the 

optimization of PID controller gain values with different conditions. The ACO based PID 

controller in AGC which provide better performance (settling time, overshoots and damping 

oscillations) than conventional controller in equal three area reheat thermal interconnected 

power systems, when GRC non-linearity not taken into the account. Non-linearity in the 

system yield more damping oscillations with maximum overshoot and high settling time. The 

ACO based controller reduces the damping oscillations and settling lime compared to 

conventional controller. But it reduce effectively settling time, maximum overshoot, when 

GRC non-linearity effect is considered to an account and maximum overshoot is reduced only 

considerable amount.. Finally, this work concluded that, the proposed optimization technique 

having ability to keep the system response with minimum damping oscillations and less 

settling time, if non-linearity effect consider to an account or not. 
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