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Abstract: This paper proposes an Adaptive Selective Cuckoo Search Algorithm (ASCSA) for 

solving bi-objective short-term hydrothermal scheduling (BOSTHTS). The major purpose of 

the BOSTHTS problem is to reduce electric generation fuel cost and polluted emission from 

all considered thermal generating units over a scheduled intervals. In addition, the problem 

also takes all constraints of hydrothermal power systems such as real power demand of load, 

limitations of generations and limitations of reservoirs into account. The proposed method is 

constructed by tackling all drawbacks of classical Cuckoo Search algorithm (CCSA) so as to 

shorten number of iterations and fast converge to good solutions. The proposed method 

together with CCSA and another modified version of CCSA (MCSA) are implemented for 

two different systems with different types of fuel cost form and emission form and results 

from these methods are also compared to other existing methods. Objective comparisons and 

computation time comparisons indicate that the proposed method is superior to CCSA, 

MCSA and other compared methods. As a result, the proposed method is considered to be a 

strong optimization method for the considered BOSTHTS problem. 

 

Keywords: Adaptive selective random walk, new selection technique, multiobjective, 

hydrothermal power system, fitness function.

1. Introduction 

 The short term hydrothermal scheduling (STHTS) is a complex problem with the task of 

determining generated power of considered thermal and hydro units, and with the purpose of 

reducing total electric generation fossil fuel cost of all thermal units as much as possible over a 

scheduled time while equality constraints and inequality constraints regarding reservoirs of 

hydropower plants and all generators must be exactly satisfied [1]. However, the objective of 

minimizing the total fossil fuel for electricity generations is not a single target since thermal units 

are the main source of producing polluted emissions consisting of CO2, SO2 and NOx [2]. 

Consequently, the objective of ST HTS problem can be extended to consider the reduction of 

both total fuel cost and the gaseous emission as a result [2-5].  

 Many studies have proposed different original algorithms and improved version of these 

original algorithms for solving the BOSTHTS problem in aim to reduce the fuel cost and 

emission. These previous studies have tended to classify the complex level of the problem based 

on the form of the electric generation fossil fuel and the emission functions. The electric 

generation cost function can be expressed as the second order function or a nonconvex function 

if effects of valve during the operation process of thermal units are neglected or considered. 

Besides, the emission can be represented as a second order equation or the sum of the second 

order equation and another exponential function. The use of both the nonconvex fuel cost 

function and the sum equation is a big challenge for applied methods in addition to the large 

scale of power systems. Simulated annealing algorithm (SAA) [3] has been applied to only one 

system  of  the BOSTHTS problem where the most complex of using both nonconvex electric  
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generation cost function and exponential emission function. This study has searched some 

solutions corresponding some values of weight factors corresponding to fuel cost and emission 

and then the goal-attainment method has been employed to determine the best solution with 

suitable cost and suitable amount of emission. Therefore, the lowest emission and the lowest 

emission could not be reasonable compared to other reports from other studies. -PSO method 

[4], a combination of Particle swarm optimization and Lagrange function (-PSO ), has been 

proposed for solving three larger systems considering both fuel cost and emission. Similar to 

LGM in [2], -PSO method has constructed a Lagrange function and then coordination equations 

has been used to obtain the optimal solution. Contrary to other meta-heuristic algorithms, -PSO 

method has considered  Lagrange multiplier as a control variable in the position of each particle 

and then lambda Lagrange multiplier has been obtained. As a result, optimal generations of 

thermal units and hydro units have been determined by substituting these Lagrange multiplier 

into these coordination functions. The selection of control variable could allow -PSO method 

converge to optimal solutions very fast; however, the limitation of using Lagrange function have 

prevented -PSO from solving systems where valve point loading effects of thermal unit were 

considered. An improved genetic algorithm based on sorting non-dominated solutions (NS-GA) 

[5] has been suggested for dealing with two systems with nonconvex fuel cost function and the 

sum function of emission. This method has been considered better than other method such as 

Real-coded genetic algorithm (RC-GA) and multi-objective differential evolution (MO-DE) 

since its cost and emission were less than those of RC-GA and MO-DE.  In spite of the 

advantage, this method has also suffered from long execution time for obtaining optimal solution 

due to the characteristic of conventional GA. The combination of an enhanced genetic algorithm, 

updated multiplier and the penalty method forming EGA-UM method has been proposed and 

presented in [6] for solving the complex problem. This method was superior to conventional GA 

and GA-UM based on the comparison of fuel cost and emission. The combination of predator-

prey algorithm and Powell search algorithm (PPA-PSA) [7] has been developed for solving the 

BOSTHTS problem. PPA-PSA has been considered a potential method by owning both strong 

global search performed by PPA and powerful local search performed by PS. PPA-PSA had some 

advantages of CPSO such a low number of control parameters and simple implementation but it 

had to cope with some limits such as easily falling into local optimal solutions and lack of 

effective capability to deal with the constraints. In addition, a penalty method for tackling the 

equality constraints and inequality constraints has also been used with PPA-PSA to construct a 

stronger method, called PPA-PSA-PM. Result comparisons have indicated that PPA-PSA-PM 

was the best method among several implemented methods such as CPSO, CPSO with Penalty 

method (CPSO-PM), PPA, PPA with penalty method (PPA-PM) and PPA-PSA. However, the 

best method has run the search process long for both small size systems and large size systems. 

The combination of improved model and multi-objective distribution algorithm (IM-MODA) [8] 

has solved the HTS problem with nonconvex fuel cost function of thermal units successfully. 

However, there was no any demonstration that the improvement in the method was efficient 

because there was no comparison between the method and other ones. Furthermore, the fuel cost 

and emission comparisons have pointed out that IM-MODA was worse than MO-DE, NS-GA 

and EGA-UM since it had higher cost and higher emission.   

 Conventional cuckoo search algorithm (CCSA), a recently new meta-heuristic algorithm, 

created by Yang et al in 2009 [9] by inspiring intelligent behavior of cuckoo birds. Wide and 

successful applications of the CCSA for different optimization problems in different fields have 

been studied such as wireless sensor networks [10], wind farm layout design problem [11], 

optimal heat and power generation [12]. In spite of the good efficiency of CCSA, there have 

been many studies, which have identified the disadvantages of this method and brought up 

several modifications on the CCSA [13-15]. These studies have tried to improve the performance 

of CCSA by fulfilling different modifications but they did not point out clear weak points of the 

method. Consequently, we point out drawbacks of CCSA and then we will analyze the 

disadvantages and propose improvements. As stated in [16], the search process of CCSA has 

three stages consisting of global search, local search and selection procedures. The selection 
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procedure keeps better solution between old solution and new solution at the same nest while 

global search procedure and global search procedure aim to effective search zone. CCSA has 

two times producing new solutions at each iteration via Lévy flights and mutation operation in 

which Lévy flights acts as global search and mutation operation acts as local search. CCSA has 

better performance than most original methods but its search ability can be further improved 

because its mutation operation cannot exploit the highest local search ability and its selection 

can keep less effective solutions. In order to get fast search ability and converge to the best 

solutions with lower fitness value, improved version of CCSA (ASCSA) is formed in the paper 

by changing two techniques of CCSA such as mutation operation and selection operation into 

new selection technique and adaptive mutation technique. The new selection technique becomes 

more promising than the old one due to the change of strategy keeping solutions. It gathers all 

old and new solutions into a big group and then leading solution with the best fitness values are 

retained. The adaptive mutation technique can expand and narrow search space for each 

considered solution based on quality of the considered solution and the best solution. Namely, 

larger search zone is suggested in case the considered solution is close to the best solution but 

smaller search zone is selected for the case of high distance between the considered solution and 

the best solution. For testing the impact of the two proposed techniques, bi-objective HTS 

problem with two different systems taking total power loss of branches and valve effects of 

thermal generating units into account is employed. The first system is comprised of two thermal 

units and two hydro units without considering valve point loading effects on thermal units and 

the second one is comprised of two hydro units and four thermal units considering the valve 

effects. The performance of ASCSA will be evaluated via the comparison with two Cuckoo 

search variants including CCSA and Modified CSA (MCSA), and other methods reported in the 

paper such as RC-GA, NS-GA, MO-DE, SPEA, GA-MU, EGA-UM, CPSO-PM, PSO, PPA, 

PPA-PM, PPA-PSA and PPA-PSA-PM. 

 

2. Formulation of BOSTHTS Problem   

A. Objectives of BOSTHTS Problem   

 The objectives are to reduce both electricity generation cost and polluted emission as below 

 
1 1

1 1 2 2

1 1

N N

i i

i i

Min F F F 
= =

= +    (1) 

Where 1 and 2 are respectively weights of electric generation cost and polluted emission, 

and constrained by [9]: 

 1 2 1 + =   (2) 

 1 20 , 1     (3) 

And F1i and F2i are the electric generation cost and polluted emission of the ith thermal 

generating unit. The electric generation cost can be approximately represented in terms of 

formula (4) corresponding to the case of neglecting valve point loading effect or formula (5) 

corresponding to the case of considering the valve point loading effects [1]. 

 2

1i si si si si siF a b P c P = + + 
  (4) 

 ( )( )2

1 ,minsini si si si si si si si si siF a b P c P d e P P = + + +   −
  

  (5) 

where asi, bsi, csi, dsi and esi are coefficients of electric generation cost function of the ith thermal 

generating unit; Psi,min is the lowest power output of unit i.  

Besides, polluted emission mass released by the ith thermal generating unit can be modeled as 

the sum of the second order function and exponential function shown in the following expression 

[7]: 

 
2

2 exp( )i esi esi si esi si esi esi siF a b P c P d e P= + + +   (6) 

where aesi, besi, cesi, desi, and eesi are coefficients of emission function. 
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B. Hydraulic and System constraints  

B.1. Balance between demand and supply: In order to keep frequency within working range, 

demand side and supply side together with power loss must follow the rule below: 

 
1 2

, , , ,
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P P P MP m
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+ − == −   (7) 

where N1 and N2 are the number of thermal generating units and hydro units; M is the number of 

all subintervals; PD,m is real power required by load in the mth subinterval ; and PL,m is the power 

losses in transmission lines in subinterval and is obtained by[2]: 
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B.2. Balance between used water volume and available water volume: discharged water volume 

through turbines and predetermined water volume by operators are constrained by: 

 
aj

M

m

mjm Wqt =
=1

,
; j = 1,…, N2  (9) 

Where Waj is the amount of available water for the jth hydropower plant over scheduled horizon; 

tm is the duration subinterval m; and qj,m is the discharged water, which is obtained by using the 

model below[2].  

 2
,,, mhjjmhjhjhjmj PcPbaq ++=   (10) 

where ahj, bhj and csi are coefficients of discharged water function via the ith hydro turbine. 

 

B.3. Real power generation limitations: each hydro and thermal unit have to produce power 

within predetermined ranges as shown in the following inequalities 

 max,,min, simsisi PPP    (11) 

 
max,,min, hjmhjhj PPP    (12) 

where Psi,max and and Phj,max are maximum power of the ith thermal generating unit and the jth 

hydro unit; and Phj,min is the minimum power of the jth hydro unit.  

 

3. Adaptive Selective Cuckoo Search Algorithm 

A. Lévy flight random walk 

 Lévy flight random walk is a mechanism for generating the first new solutions. For each 

current solution Xd, new solution is produced by using the following expression [9]. 

  ( ), 1 ( )d new d d bestX X X G Levy = + −    (13) 

where Xd,new1 is a new solution of Xd; Gbest is the global best solution in all considered solutions; 

α is the scaling factor; and Levy(β) is the Lévy distribution. 

   

B. Adaptive selective random walk (ASRW) 

 The proposed adaptive selective random walk is also a technique to produce the second new 

solutions. The proposed ASRW is developed by improving selective random walk (SRW) of 

CCSA. The original ASRW is shown in the following equation.  

 1 2

, 2

.( )d r r d a

d new

d

X rand X X if R P
X

X otherwise

 + − 
= 


  (14) 

 Where Pa is the probability that a fraction of solutions is newly generated; Rd is a random 

number for solution d; Xr1 and Xr2 are randomly taken solutions from the current population.    

 In case of using (14), if a current best solution Gbest is far from the real optimal one and the 

old solution is very close to Gbest, a new solution will be very close to the old solution and the 

algorithm will be terminated and find local optimum when using only the two point factor. To 

overcome the hopeless circumstance, a new equation for generating new solutions is proposed 
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as below.  

 
, 2 1 2 3 4.( )d new d r r r rX X rand X X X X= + + − −   (15) 

 To determine either using (14) or (15), a new selection condition with the use of FDR is 

proposed in eq. (16) in which FTd and FTbest are the fitness function of solution Xd and the best 

solution, respectively. When FDRd is less than tolerance ε, eq. (16) is used. Otherwise, eq. (15) 

is employed. The tolerance ε is a predetermined value ranging in [10-5, 10-4, 10-3, 10-2, 10-1].      

 d best
d

best

FT FT
F

FT
DR

−
=   (16) 

As a result, the adaptive random walk is illustrated via the following modified equation. 

 
1 2 d

, 2 1 2 3 4 d

.( ) ( ) & (FDR )

.( ) ( ) & (FDR )

d r r d a

d new d r r r r d a

d d a

X rand X X if R P

X X rand X X X X if R P

X R P





 + −  
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  (17) 

C. New selection technique 

 In CCSA, old solution Xd and new solution Xd,new (where d=1, …, Np) are compared fitness 

function and better one with less fitness function will be retained as the meaning of the two 

following formulas:  

 , ,
, 1,....,

d new d new d

d p

d

X if FT FT
X d N

X otherwise

 
= =


 (18) 

 , ,
, 1,....,

d new d new d

d p

d

FT if FT FT
FT d N

FT otherwise

 
= =


 (19) 

where FTd and FTd,new are the fitness values of Xd and Xd,new. 

In the proposed ASCSA, the selection technique based on eqs. (18) and (19) is only employed 

after the first generation via technique of Lévy fights and it would not be used after the second 

generation at the end of each iteration. At the moment, if the selection of pair comparison 

between the old solution and the new solution at the same nest continues to be employed, there 

will be a possibility that a better solution at another nest will be abandoned while a worse solution 

at the nest is certainly retained. As pointed out the disadvantage of the pair comparison in eqs. 

(18) and (19), we propose a new selection technique as the three following steps:   

Step 1: Each old solution Xd and new solutions are grouped into one 

Step 2: Arrange the order of all the solutions in the new group so that the best solution is in the  

    first order and the worst one is in the end. 

Step 3: Keep the Np solutions which are in the leading group.  

      

4. The Application of ASCSA for Solving the BOSTHTS Problem. 

A. Initialization 

 In initilaization procedure, Np solutions Xd (d = 1, ..., Np) is first randomly produced 

consisiting of decision variables Psi,m,d and qj,m,d by using the two following expressions: 

 
, , ,min ,max ,min 1*( );  1,...,  & 2,...,  si m d si si siP P rand P P m M i N= + − = =  (20) 

 
, , ,min ,max ,min 2*( ); 1,...,  1& 1,...,j m d j j jq q rand q q m M j N= + − = − =  (21) 

 It is clear that each solution contains power output of (N1-1) thermal generating units over all 

M subintervals and discharged water of N2 hydro turbines over (M-1) subintervals. The selection 

aims to determine dependent variables and deal with all constraints so that solutions are valid 

and own acceptable fitness values. The detail of dealing with equality constraints can refer to the 

next section.   

 

B. Handling real power balance constraint and available water volume constraint 

  Penalty method for dealing with equality constraints in application of meta-heuristic 

algorithms to optimization problems plays an important role resulting in valid solutions with 
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expected fitness. This is totally different from the application of deterministic algorithms using 

maximum error as a major termination condition. Thus, selection of decision variables in each 

solution is one of the significant factors for finding solutions of the considered problem. In the 

section, step by step for obtaining dependent variable and handling equality constraints is shown 

and explained in detail as follows: 

 By using (21), discharged water via hydro turbines over the first (M-1) subintervals are 

known and are substituted into (9) for obtaining discharged water of the Mth subinterval as 

follows:  

 

−

=

−=
1
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m

MmjmjMj tqtWq  (22) 

All discharged water are substituted into (10) for calculating power output of all hydro units as 

the following formula: 
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 As a result, power output of all hydro units and thermal units excluding the first thermal unit 

are known. Thus, the power output of the first thermal unit needs to be determined b y using the 

following model:   
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C. Calculation of fitness function 

 After finding all variables of the problem, each solution in the current population must be 

evaluated for ranking quality and carrying out strategy of producing new solutions. Normally, 

evaluation criteria of solutions is performed relying on its fitness value; therefore, the fitness 

function must reflect the quality of solutions via objective function value and penalization values 

of all violations of all constraints. In the problem, the objective function is F function in eq. (1) 

and the term penalizations are the power output of thermal unit 1 and the discharged water at the 

last subinterval. Consequently, the configuration of fitness function includes the terms as shown 

in eq. (25).  
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Where Ks and Kq are punishment coefficients; and ViolationPs1 and ViolationqM are the 

punishment values corresponding to limitation violation of power of thermal unit 1 and 

discharged water of all hydro unit at the last subinterval.   
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D. New solution generations 

 As shown in section 3, there are two times new solutions generated in which the first time is 

done via Lévy flight random walk in section 3.A and the second time is done via the proposed 

adaptive selective random walk in section 3.B.  

  

E. Fixing new solutions 

 As updating values for new solutions, its decision variables can be outside allowable 

operating values. Thus, the two following formulas are applied for fixing the violation 
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F. Iterative algorithm termination condition 

 The whole search algorithm is terminated in case that current iteration G equals the maximum 

iteration Gmax. 

  

G. The whole search procedure of ASCSA for finding solutions of the considered problem  

 The whole search process of the proposed ASCSA for the considered problem is shown in 

the flowchart of Figure 1. 

 
Start

Set values to Np, Gmax, Pa, and ε 

- Use (25) to evaluate quality of such new solutions.

- Compare quality of current solutions and new solutions to retain better ones 

G=Gmax

Stop

G = G + 1

- Produce Np solutions by using eq. (20) and eq. (21)

- Calculate power output of all remaining units by using Section 4.B

- Evaluate fitness function using (25)

- Choose the best solution Gbest and name other ones Xbestd.

- Start iterative algorithm by set G = 1

Step 1

Step 2

Step 3

Step 5

Step 6

Step 7

Step 8

Step 4
- Use Lévy flights in Section 3.A to generate the first generation

- Use (28) and (29) to fix all new solution of the first generation

- Calculate power output of all remaining units by using Section 4.B

- Generate new solutions using adaptive selective random walk technique

- Use (28) and (29) to fix all new solution of the first generation

- Calculate power output of all remaining units by using Section 4.B

- Use (25) to evaluate quality of such new solutions.

- Compare quality of current solutions and new solutions to retain better ones 

- Determine the best solution Gbest 

 
Figure 1. The flowchart of applying the proposed method for finding solutions of the 

considered problem 
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5. Numerical Results 

 In the section, two systems with different form of electric generation cost and polluted 

emission functions are employed to test the performance of the ASCSA. System 1 with convex 

form for both fuel and emission functions while system 2 with nonconvex form for electric 

generation cost and exponential form for emission can challenge the effectiveness of the ASCSA. 

The detail of the result is as follows. Besides, CCSA [9] and MCSA [13] are also coded for 

finding solutions of the two considered systems for result comparison. The proposed method 

together with CCSA and MCSA are searching solutions fifty times for each case by using the 

same Matlab platform and the same computer with Processor 2 GHz and Ram 2 GB. 

 

A. Test system 1 

 In this section, system 1 consisting of two thermal and two hydro units planed in three eight-

hour subintervals [5] is employed to test the performance of ASCSA when compared to CCSA 

and MCSA, and other methods. In this case, second order equations are used for electric 

generation cost and emission functions.  

 For implementation of the applied methods, Np =30 and Gmax =70 are used for three dispatch 

cases while probability Pa is set to nine values ranging from 0.1 to 0.9 with a change of 0.1. In 

addition, the tolerance values of ASCSA is set to five values from 10-1 to 10-5 for the first dispatch 

case of economic dispatch and then the best value will be reused for the two remaining dispatch 

cases. The results obtained by such three applied methods for the economic and emission 

dispatch cases with respect to minimum fitness, average fitness, maximum fitness, standard 

deviation of 50 fitness values and computation time on average are respectively reported in Table 

1 and Table 2. For economic dispatch, ASCSA has obtained the best cost equal to $64606.0036 

at different values of Pa such as 0.6, 0.7, 0.8 and 0.9 and at different values of tolerance such as 

10-2 and 10-3 and 10-4; however, the best standard deviation equal to 0.0071 is only obtained at 

Pa=0.8 and tolerance=10-2. Consequently, 10-2 is the best value of tolerance and it will be applied 

for the rest of cases in the paper while Pa is always tested in the predetermined range from 0.1 

to 0.9. On the contrary, the best costs from CCSA and MCSA are respectively $64606.3218 and 

$64606.311 obtained only at Pa=0.8. Other values of Pa could not lead to the same cost or less 

cost for CCSA and MCSA. The result can indicate that ASCSA can reduce by $0.3182 and 

$0.3074 compared to CCSA and MCSA for the best cost, and can reduce by $10.7103 and 

$7.0844 compared to CCSA and MCSA for the maximum cost. Furthermore, all fifty trial runs 

by ASCSA nearly have obtained the same value, which is very close to the best cost since the 

standard deviation cost is 0.0071. This figure is opposite for CCSA and MCSA when their 

standard deviations are respectively 1.7573 and 1.4373. The comparisons have pointed out that 

ASCSA can improve the best optimal solution and the stabilization of search ability significantly 

compared to CCSA and MCSA for the economic dispatch. The superiority of ASCSA over 

CCSA and MCSA in terms of solution quality continues to be demonstrated via the best emission 

shown in Table 2 

             

Table 1. The result comparisons obtained by three CSA methods for economic  

dispatch of system 1 

Method CCSA MCSA ASCSA 

Min. cost ($) 64 606.3218 64 606.311 64 606.0036 

Avg. cost ($) 6 4 608.7512 64 609.563 64 606.0090 

Max. cost ($) 64 616.7139 64 613.088 64 606.0460 

Std. dev. ($) 1.7573 1.4373 0.0071 

Avg. time (s) 0.2 0.2 0.2 

 

 The exact computation resulting in a difference emission between ASCSA and CCSA, and 

ASCSA and MCSA are respectively 2.7933lb and 2.4697lb for the best emission while those are 

respectively 6.6322lb and 9.8654 for average emission. It is clear that ASCSA is more effective 

than both CCSA and MCSA for the case of emission dispatch. The fitness convergence 
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characteristic for the economic and emission dispatch cases depicted in Figure 2 and Figure 3 

have illustrated the whole search of the best solution and have resulted in a conclusion that the 

proposed method is faster convergent to the best solution than both CCSA and MCSA for the 

two cases and the improvement here is great. 

 

Table 2. The result comparisons obtained by three CSA methods for emission  

dispatch of system 1 

Method CCSA MCSA ASCSA 

Min. emission (lb) 567.6078 567.2842 564.8145 

Avg. emission (lb) 571.4467 574.6799 568.5481 

Max. emission (lb) 576.3903 589.7284 581.4021 

Std. dev. (lb) 2.1250 3.9628 2.9747 

Avg. time (s) 0.2 0.2 0.2 

 

 
Figure 2. Fitness values obtained by three CSA methods for fuel cost objective 

 of the first system 

 

 
Figure 3. Fitness values obtained by three CSA methods for emission objective 

 of the first system 
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Figure 4. The set of non-dominated solutions and the best solution obtained by the proposed 

method for two objective case of the first system. 

 

        Table 3. Comparisons for the first system with three dispatch cases 

Method 

 

Economic dispatch Emission dispatch Bi-objective dispatch 

Cost ($) Time (s) Emission(lb) Time (s) Cost ($) Emission (lb) Time (s) 

RC-GA [5]  66 031 21.63 586.14 20.27 - - - 

NS-GA [5]  - - - - 66 331 618.08 27.85 

MO-DE [5]  - - - - 66 354 619.42 30.71 

SPEA [5]   - - - - 66 332 618.45 34.87 

CPSO - PM[7]  65 741 18.25 585.67 18.00 65 821 620.78 18.98 

CPSO [7] 65 241 18.32 579.56 18.31 65 731 618.78 19.31 

PPA-PM [7]  64 873 16.14 572.71 15.93 65 426 612.34 16.53 

PPA [7]  64 718 15.99 569.73 15.18 65 104 601.16 16.34 

PPA-PSA-PM[7]  64 689 15.98 568.78 15.92 65 089 600.24 16.15 

PPA-PSA [7]  64 614 15.89 564.92 15.45 65 058 594.18 16.74 

CCSA 64 606.3 0.2 567.61 0.2 65 054.601 594.474 0.2 

MCSA 64 606.3 0.2 567.28 0.2 65 052.004 594.594 0.2 

ASCSA 64 606.0 0.2 564.72 0.2 65 053.899 594.045 0.2 

 For the bi-objective optimization case, there are 22 non-dominant solutions obtained by 

different values for Ψ1 and Ψ2 while satisfying eqs. (4) and (5). The most suitable solution is then 

obtained by using the Fuzzy based technique [17-18]. Finally, the Pareto curve has been obtained 

and depicted in Figure 4 and the best compromise has been also pointed out based on the highest 

value of the cardinal priority. The way to obtain the best compromise for CCSA and MCSA has 

also been carried out similarly. As a result, the fuel cost and emission yielded by ASCSA has 

been compared to those from other reported in Table 3. The fuel cost comparison and emission 

comparison has pointed out that ASCSA has obtained the best optimal solution for economic 
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dispatch and the best optimal solution for emission dispatch compared to all methods. In fact, 

the cost and the emission by ASCSA are $64,606.0 and 564.72lb while the values from the best 

PPA-PSA method in [7] are respectively $64,614 and 564.92lb, and those from the worst RC-

GA method in [5] are $66,031 and 586.14lb. It is clear that ASCSA can reduce to $8 and 0.2lb 

compared to PPA-PSA, and $1425 and 21.42lb compared to RCGA. For the bi-objective 

optimization case, ASCSA can obtain better cost and emission than CCSA; however, there is a 

trade-off between the fuel cost and emission yielded by MCSA and ASCSA since ASCSA has 

obtained worse cost but better emission. Compared to the rest of methods, ASCSA can save 

$1,300 and 25lb compared to the worst MO-DE method in [5] and $4 and 0.135lb compared to 

the best PPA-PSA method in [7]. Furthermore, the execution time from the proposed ASCSA is 

the fastest equal to 0.2 second while other ones have spent much more time from 15.45 seconds 

to 34.87 seconds. As a result, it can give a conclusion that ASCSA is the best method compared 

to all methods since it has obtained the best cost and emission with the fastest execution time. 

 

B. Test system 2

 The second system with two hydro and four thermal units over four subintervals with twelve 

hours for each considering non-convex electric generation cost function and an exponential form 

of polluted emission function is used as a test system [5] . For application of such three CSA 

methods, Np =50 and Gmax =300 are taken for CCSA and MCSA while Np =50 and Gmax =200 for 

the proposed method. The result comparisons reported in Table 4 for the system see that ASCSA 

has obtained the best fuel cost of $64,728 for economic dispatch and 22,818.3 lb for emission 

dispatch while those from CCSA are respectively $65,243 and 22,821.3 lb, and those from 

MCSA are respectively $64,889 and 22,822.2 lb. The exact computation indicates that the cost 

from ASCSA is less than CCSA and MCSA by $515 and $161. Equally, the emission from 

ASCSA is also lower than that from CCSA and MCSA by 3 lb and 3.9 lb. Note that both CCSA 

and MCSA have been slowly convergent to optimal solutions by setting Gmax =300 while ASCSA 

has spent only 200 iterations. The lower number of iterations leads to the faster execution time 

from ASCSA compared to CCSA and MCSA. In fact, that from ASCSA is under one second 

while that is around 1.5 seconds for CCSA and is around 2.3 seconds for MCSA. The superiority 

of the proposed ASCSA method over CCSA and MCSA continues to be reflected by the fitness 

convergence characteristic shown in Figure 5 and Figure 6. It can be seen that the proposed 

method is always faster convergent than two others. Among the methods in the studies [3], [5-

8], PPA-PSA is still the best one with the lowest fuel cost and emission for all the dispatch cases. 

The method has obtained the best cost of $65,567 for economic dispatch and the best emission 

of 22,828 lb for emission dispatch, and $66,951 and 25,596 lb for electric generation cost and 

polluted emission of the two -objective optimization case. Although the results yielded by PPA-

PSA are promising compared to other ones, these values are higher than those from ASCSA. The 

exact computation reports that ASCSA can reduce amount of money and amount of emission 

max for economic and emission dispatch cases compared to the method by $837 and 9.7 lb. For 

the bi-objective optimization case, ASCSA continues to reduce by $415 and 952 lb. Clearly, the 

reduction of fuel cost and emission yielded by ASCSA is not low compared to PPA-PSA. 

Consequently, it can be confirmed that ASCSA has obtained better quality of optimal solutions 

than all considered methods. Furthermore, the execution time reported in Table 4 also sends a 

message that ASCSA is much faster than all methods. The methods in [3] and [6] were coded in 

a Pentium III computer but computers used in studies [5], [7] have not been mentioned. Finally, 

based on the evidences of high quality solutions and shorter simulation time, it can lead to a 

conclusion that ASCSA is very efficient for solving the problem with two objective functions 

consisting of fuel cost and emission where valve effects are taken into account.        
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Table 4. Comparisons for system 2 with non-convex electric generation cost and exponential 

emission functions

 

Method 

Economic dispatch Emission dispatch Bi-objective dispatch 

Cost 

($) 

CPU 

(s) 

Emission 

(lb) 

Time 

(s) 

Cost 

($) 
Emission (lb) 

Time  

(s) 

SAA[3] 70 718 - 23 200 - 73 612 26 080 1492 

RC-GA [5] 66 516 40.36 23 222 41.98 - - - 

NS-GA [5] - - - - 68 333 25 278 45.42 

MO-DE [5] - - - - 68 388 25 792 46.76 

SPEA [5] - - -  68 392 26 005 57.02 

GA- UM [6] 67 751 90.15 23 223 78.27 68 521 26 080 96.10 

EGA- UM[6] 66 539 51.63 23 223 42.87 68 492 26 080 53.54 

CPSO - PM [7] 66 349 33.14 23 167 33.63 67 994 25 902 34.11 

CPSO [7] 66 223 32.15 23 112 32.34 67 892 25 773 34.52 

PPA-PM [7] 65 912 21.03 23 078 21.18 67 211 25 606 22.04 

PPA [7] 65 885 21.45 22 966 21.56 67 170 25 601 22.11 

PPA-PSA-PM [7] 65 723 21.12 22 912 24.74 67 092 25 600 24.90 

PPA-PSA [7] 65 567 22.00 22 828 21.98 66 951 25 596 
22.76 

 
 

IM-MODA [8] ] 68 000 - 23 031.57 - - - - 

CCSA 65 243 1.54 22 821.3 1.6 66 733 24 667 

 
1.6 

MCSA 64 889 
 

2.3 22 822.2 
 

2.2 66 698 
 

24 727 
 

2.3 

ASCSA 
64 728 

 
0.96 

22 818.3 

 
0.97 66 536 

24 644 

 
0.99 

 

 
Figure 5. Fitness values obtained by three CSA methods for fuel cost objective  

of the second system 
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Figure 6. Fitness values obtained by three CSA methods for emission objective  

of the second system 

 

6. Conclusions 

 The paper has proposed an adaptive selective cuckoo search algorithm for finding optimal 

solutions of the bi-objective hydrothermal power system optimization operation problem 

considering short term. The ASCSA has been implemented for dealing with two systems with 

different fuel cost functions and different emission functions. In the first system, the objective is 

represented as second order fuel cost and emission functions but the objective is represented as 

nonconvex fuel cost function and convex emission function in the second system. The 

performance of ASCSA compared to original CSA and another modified version has indicated 

that ASCSA is superior to such two methods with respect to optimal solution quality and 

convergence time. The figure of comparisons is also the same when compared to other methods. 

Consequently, it can result in a conclusion that ASCSA is a strong optimization tool for finding 

solutions of the considered problem. 
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APPENDIX 

Table A1. Power output of thermal units and hydro units found by the proposed method for the 

first test system 

Case  
Sub-

interval 

PD 

(MW) 

Ps1 

(MW) 

Ps2  

(MW) 

Ph1  

(MW) 

Ph2 

(MW) 

Economic 

dispatch 

1 900 168.6634 415.9205 245.3948 98.5524 

2 1200 219.1281 570.2793 305.4036 157.0828 

3 1100 202.1743 518.4747 285.2499 137.3699 

Emission 

dispatch 

1 900 299.9557 359.1235 213.0055 59.9468 

2 1200 299.9728 434.9514 330.9877 188.3681 

3 1100 299.8197 415.1421 289.3711 141.2896 

Bi-objective 

optimization 

1 900 230.3217 372.7074 237.1016 89.3736 

2 1200 289.7870 488.0614 311.7070 163.6907 

3 1100 269.9159 448.4597 286.7235 139.3812 
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Table A2. Power output of thermal units and hydro units found by the proposed method for the 

second test system 

Case Sub. 
PD 

(MW) 
Ps1 

(MW) 
Ps2  

(MW) 
Ps3 

(MW) 
Ps4  

(MW) 
Ph1  

(MW) 
Ph2 

(MW) 

Economic 

dispatch 

1 900 99.074 30.179 125.065 139.795 175.171 346.455 

2 1100 98.647 30.000 124.977 229.506 216.244 424.244 

3 1000 98.574 30.000 40.000 229.494 242.226 379.766 

4 1300 98.554 112.675 209.832 229.606 243.064 438.760 

Emission 

dispatch  

1 900 72.376 133.715 136.053 91.508 167.833 314.330 

2 1100 78.874 141.821 147.592 100.161 249.623 405.876 

3 1000 75.419 137.437 142.303 95.598 208.030 360.863 

4 1300 101.826 167.785 184.864 129.322 249.996 500.000 

 

Bi-objective 

optimization 

1 900 98.523 112.683 124.935 50.076 185.955 344.091 

2 1100 98.536 112.699 124.919 139.769 244.179 403.679 

3 1000 98.534 112.667 124.894 139.762 196.680 346.885 

4 1300 98.537 146.090 209.813 139.768 249.796 489.397 

 

  

 

 

Thang Trung Nguyen, He finished Bachelor degree in Electrification and 

electric supply, and Master degree in Electrical Engineering from HCMC 

University of Technology and education in Vietnam in 2008 and 2010, 

respectively. He finished his PhD degree in early 2018. Now, he is a lecturer 

and researcher at faculty of electrical and electronics engineering, Ton Duc 

Thang university, HCM city, Vietnam. He is focusing on different research 

fields such as power system optimization operation, optimization algorithms 

and Renewable Energies. 

 

 

 

Hai Van Tran, He finished Bachelor degree and Master degree in Electrical 

Engineering from HCMC University of Technology and education, Vietnam in 

2007 and 2009, respectively. Now, he is working at Faculty of Electrical and 

Electronic Technology, Ho Chi Minh City University of Food Industry, 

Vietnam. His research fields are transmission power network, optimization 

control and new energies such as wind and photovoltaic. 

 

 

A Novel Effective Meta-Heuristic Algorithm for BI-Objective 

420


