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Abstracts: This paper presents an efficient and reliable new teaching based optimization 

algorithm for solving scheduling of hydro-thermal systems with cascaded reservoirs. Unlike 

the Teaching Learning Based Optimization, the Double Teaching Optimization (DTO) 

algorithm has two teaching phases i.e. the first teaching phase is identical with conventional 

TLBO algorithm preserving the inherent basics of it. The second teaching phase is the 

modified part considering students once again interact with the same teacher, who is the better 

than average students called double teaching phase. The feasibility of the proposed method is 

demonstrated in five different cases of two standard test systems consisting of four cascaded 

hydro and thermal units. The findings of the proposed method are better than the results of 

other established methods reported in literature in terms of quality of solution and convergence 

characteristics.  
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1. Introduction 

     Over the last few decades, we experience energy crisis and ill effects of pollution to save 

nation, so it is very important to utilize energy in an efficient manner. In order to utilize energy 

efficiently, cost must be as less as possible and this possesses a requirement to develop 

scheduling methods that accommodate generation diversity and line flow limitations and 

concurrently can produce accurate scheduling results. Again the power generation is much 

lesser as compared to power demand in our country, so the main aim of power system 

operation is to generate and transmit power to meet the system load demand and losses at 

minimum fuel cost and minimum environmental pollution. Hence, a mixed of hydrothermal 

scheduling is necessary. The short range hydrothermal problem has usually as an optimization 

interval of one day or week. This period is normally subdivided into subintervals for 

scheduling purposes. Here the load demand, water inflow and discharge of water are known. A 

set of starting condition that means the reservoirs storage level is being given. The optimal 

power schedule can be prepared that can minimize the desired objective while meeting the 

system constraints successfully. In order to solve the scheduling problem of short term hydro-

thermal systems, the head of water level is assumed to be constant. The objective of short term 

hydrothermal scheduling of power system is to determine the optimal hydro and thermal 

generations  in  order  to  meet  the  load  demands  over  a  scheduling  horizon  of  time  while  
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satisfying the various operational constraints imposed on the hydraulic and thermal power 

system network. The optimal scheduling of hydrothermal power system is usually more 

complex than that for all thermal system. It is basically a non-linear problem involving 

nonlinear objective function and a mixture of linear and non-linear constraints on thermal 

plants as well as hydroelectric plants [1-2].  

 Dynamic programming (DP) [3,4] method have been employed in solving most economical 

hydro thermal generation schedule under the practical constraints. However, this method is 

suffering from the curse of dimensionality and local optimality. Many stochastic search 

algorithms like artificial neural network [5],simulated annealing technique [6], a coordinated 

approach [7], genetic algorithm [8], evolutionary programming (EP) [9], two phase neural 

network approach [10], fast evolutionary programming [11], fuzzy interactive EP [12], 

simulated annealing based goal attainment method[13], an efficient real coded GA [14], 

modified differential evolution (MDE) [15], improved particle swarm optimization (IPSO) 

[16,18], biogeography based optimization [17], clonal selection algorithm [19], an adaptive 

artificial bee colony optimization [21], a mixed binary evolutionary particle swarm optimizer  

[22], teaching learning based optimization (TLBO) [23] and improved DE [24] have applied 

successfully to solve hydrothermal problems. 

 The neural network [5,10] based approaches may suffer from excessive numerical 

iterations. Simulated annealing (SA) [6,12] requires appropriate annealing schedule otherwise 

achieved solution will be of locally optimal. Genetic algorithm [8,14]  is commonly used 

evolutionary technique and is based on selection, crossover and mutation operation. However it 

suffered from premature convergence which may lead to a local optimal solution. In 

differential evolution [15,24] algorithm, it is difficult to properly choose the control parameter. 

The literature survey of improved particle swarm optimization (IPSO) [16,18,22] reveals that 

this technique is able to generate high quality solutions with less computational time, but 

sometimes trapped by local optima. Krill herd algorithm (KHA) [25] technique and symbiotic 

organisms search (SOS) algorithm [26] have been successfully employed to solve the short-

term hydrothermal scheduling (HTS) problem by Roy et.al. and Das et.al, respectively. 

 Teaching learning based optimization is a derivative free optimization and no control 

parameters for tuning applied successfully in various large scale problems [20, 23]. This paper 

proposes modified teaching learning based optimization called as double teaching optimization 

(DTO) for short term optimal scheduling of generation in a hydro thermal system which 

involves the allocation of generations among the multi reservoir cascaded hydro plants having 

prohibited operating zones and thermal units with valve point loading so as to minimize the 

total fuel cost of thermal plants while satisfying the various constraints imposed on hydraulic 

and thermal network. To verify the superiority of the proposed approach, two hydrothermal 

systems have been considered in this study. The first test system consists of a multi-chain 

cascade of four hydro units and one thermal unit and second test system with same cascaded 

four hydro units and three thermal units. The results obtained by proposed DTO method are 

compared with other population based intelligent algorithms and found to be better not only in 

operating cost but also in convergence property in achieving the optimal solution.    

 

2. Problem Formulation of Short Term Hydro Thermal Scheduling 

 The objective of the short term scheduling of a multiple hydro-thermal system over a 

schedule horizon to meet the load demand is to schedule the hydro and thermal plants 
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generation in such a way that minimizes the generation cost without violating any constraints 

imposed on hydro and thermal plants. 

 

A. Objective function 

     As the fuel cost of hydropower plants are insignificant in comparison with that of thermal 

power plants, so the main objective of the HTS is to minimize the fuel cost of thermal units 

while making use of availability of hydro resource as much as possible. The objective function 

of HTS problem for thermal units having quadratic cost function is given by 

   Minimize   ijii

nt

i
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j

jii cPTbPTaPTFC 
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Where nt  is the number of thermal generating units and NH  is the number of time intervals.

  

 The fuel cost function of each thermal generating unit considering the valve point effects is 

expressed as the sum of quadratic and sinusoidal function. Thus the fuel cost function with 

valve point effects can be expressed as  
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B. Equality Constraints 

(i) power balance constraints 

 The total active power generation must balance the predicted power demand and the 

transmission loss at each time interval over the scheduling horizon and it may be 

mathematically expressed as     
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 Where the hydro electric generation is a function of water discharge rate and storage 

volume, which can be expressed as follows: 
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(ii) Initial and final reservoir storage constraints: Initial and final reservoir volumes are 

generally set by the midterm scheduling process. This equality constraint implies that the total 

quantity of available water is fully utilized. This equality constraint is mathematically 

expressed as follows: 

 begin
ii VV 1,

; end
ii VV 25,

    (5)

   

(iii) Reservoir flow balance: In this constraint, water transportation delay between reservoirs is 

considered. The flow balance equation relates the water storage volume during previous 

interval with the current storage, net inflow, discharge and spillage. This may mathematically 

be expressed as follows: 
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 C. Inequality constraints 

 (i) Power generation constraints: Active power generation of each hydro and thermal power 

plant in each hour is bounded between its upper and lower limits as given below: 

 
ijii PHPHPH max,min  , (7)    

  

 
ijii PTPTPT max,min  , Where nhi ,...,...2,1 , and NHj ,...,...2,1  (8) 

 

 (ii) Reservoir water storage constraints: The water storage capacity of each hydro power plant 

reservoir at each hour must be within its minimum and maximum limits as given below: 

 ijii VVV max,min  , Where nhi ,...,...2,1 , and NHj ,...,...2,1    (9)    

   

 (iii) Water discharge constraints: The water discharge limit of each hydro power plant 

reservoir at each hour must be within its minimum and maximum limits as given below: 

         ijii QQQ max,min                        (10)

                     

3. Double Teaching Optimization (DTO) Algorithm  

     This algorithm mainly emphasizes the importance of teacher on the students to increase the 

mean results of whole class room. Learning phase of TLBO algorithm allows the student–

student interaction through group discussion, mutual interaction etc which does not show much 

improvement in cost rather it unnecessary increases the computational time. In DTO algorithm 

the learning phase is being neglected and modified. The students once again are allowed to 

interact with teacher only as the teacher is considered as best among all students, most 

respected and knowledgeable person in the society and they always motivate the students to 

attain their goal and this is accomplished by increasing the number of interactions. There are 

two teaching phases in the proposed algorithm. So, the teacher–student interaction is better 

than the student-student interaction as the teacher is a scholar better than the average students 

and ensuring the transformation of quality education in second phase of teaching in a class 

room i.e. learner phase is neglected. This Double Teaching Optimization (DTO) is also called 

as double teaching phases based method. The DTO algorithm has certain control parameters 

i.e. mutation rate, population size and maximum iteration number.  

 

A. First teaching phase: 

     Here, the students improve their knowledge with the help of teacher and the teacher tries his 

best to enhance the average results of class room. The teacher always improves the average 

grade of the class to some extent. If the new average grade of the 
thj subject at 

thk iteration is 

k

newj , the difference between the existing mean 
k

j and new mean of the 
thj subject at the 

thk iteration may be formulated as [20, 23] given below. 

    k
jf

k
newj

k
diffj trand   5.0                                                                         (11) 

where
ft  is the teaching factor which is evaluated randomly by the following equation: 

 
  1,01 randroundt f                                                                                                (12) 
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The grade of the 
thj subject of the

thi student at  thk 1 iteration is updated by  
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(13) 

                                          

B. Second teaching phase: 

     The teacher is considered as best student )1( pN member can improve the knowledge of 

other students more quickly through interactions with each other.     :,1 NpxfXf teacher  is 

the overall grade point of the teacher as best among all students. The best solution in each 

iteration is updated and considered as teacher. So, in second teaching phase the average grade 

point of all students is better than the average grade point of learners phase as the teacher 

updates his knowledge if he finds some talented students during interaction and shares his 

knowledge among the other students inside the class.  

 As  
      :,ixfXfXf iteacher     and Npi ,...2,1  

Mathematically, the second teaching phase may be expressed as 

   k
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k
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k
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 Where, 1k

ijx ,
k

ijx are grade point of thj subject of the 
thi  student at the 

thk and 

 th
k 1 iterations;  iXf  is overall grade point of 

thi student. The total number of subjects 

offered to each student is d. where iX is expressed as 

 
 ,1.ii xX   ,2.ix  .,  ., ,. jix  .,   .,   dix .            (16)   

 As the teacher is equated the best student inside the class and the teacher’s knowledge is 

always better than the average performance of students, the student-student interaction is 

replaced by teacher student interactions same as teaching phase. Therefore, the learning phase 

is replaced by the teaching phase once again to retain the better performance of each student 

student. The inherent randomness called mutation-rate incorporated in the second phase as 

teaching phase of algorithm makes it better than the conventional TLBO algorithm. The DTO 

algorithm is having excellent exploration and exploitation abilities to provide optimal solution. 

 

4 . DTO Algorithm 

     The DTO algorithm may briefly be described with the following steps: 

Step 1: Generate a random population (Pop) according to the number of students in the class 

and number of subjects offered. It may mathematically be expressed as 
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 Where jix , is the initial grade of the 
thj subject of the 

thi student. 
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Step 2: Evaluate the average grade of each subject offered in the class. The mean grade of the 

thj subject is given by 

  jNpjijjj xxxxmean ,,,2,1 ,...,,...,..,  (18)

      

Step 3: Based on the overall grade point (objective value) sort the students (population) from 

best to worst. The best solution is considered as teacher and is given by : 

   min xfXX teacher                                                                                                                                              (19) 

Step 4: Improve the grade point of each subject (control variables) of each of the individual 

student using equation (13). 

Step 5:  In second teaching phase, each student can improve the grade point of each subject 

through the mutual interaction with teacher. The best solution is considered as teacher in 

each iteration. Improvement of grade point of each subject of every student may be 

depicted as follows: 

 As       :,ixfXfXf iteacher     and Npi ,...2,1  

for max:1 Iterk   

 
for Npi :1  

              for dj :1  

  
           

   k

jfteacherj
kk

diffj txrand   5.0   

               k

diffj

k

ij

k

ij ratemutationrandxx  .1
 

        end     

   end  

  end  
 

     In the hydrothermal scheduling the equality constraints correspond to the initial and final 

reservoir storage volumes as well as the load balance constraints are not satisfied most of the 

optimization algorithms. Therefore, modifications are incorporated in the beginning of the 

initialization in order to generate an initial feasible solution for the hydrothermal problem.  

 

5. Implementation of DTO For Short Term Hydro Thermal Scheduling 

Step 1: All the dependent variables of the HTS problem like water discharge rate of all plants 

for all the time intervals are randomly selected between their operating limits. To satisfy 

the initial and final reservoir storage constraints, the water discharge rate of all the 

hydro plant in the dependent interval is evaluated using  
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 The above step is repeated until the element representing the dependent variable satisfies 

the constraints. 

Step 2: The water discharge is evaluated using equation (20), then, the volume of each 

reservoir is computed using equation (6). After this, the generation schedule of all 

hydro plants over 24 intervals is calculated using equation (4). 
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Step 3: The thermal power is calculated using the equality constraint as given in equation (7). 

To satisfy the load balance constraints including transmission losses, a dependent 

element  jdPT ,  is randomly selected and the dependent thermal generation is 

evaluated by solving the following equation as 
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 The above step is repeated until the element representing the dependent thermal generation 

does not violate the constraints. Where, Pg= [PT PH]. 

Step 4: Compute the objective function using equation (1). 

Step 5: Calculate the mean grade of all the subjects offered to the students of the class. 

Step 6: Identify the best solution (Teacher). 

Step 7: Modify all the independent variables (discharge rate of all hydro units at all time 

interval) based on the teacher knowledge using equation (14) and (15). 

Step 8: The water discharge, volume of reservoir and power generation is checked for 

minimum and maximum limits. If discharge, volume of reservoir and power generations 

are less than the minimum level it is made equal to minimum value and if the discharge 

of water, volume of reservoir and power generation is greater than the maximum level it 

is made equal to maximum level. 

Step 9: Go to step 2 until the current iteration reaches the predefined maximum iteration 

number. 

 

6. Simulation Results. 

     To solve HTS problem the program is written in MATLAB code and is tested on 2.0 GHz 

core duo processor with 1 GB RAM. Here, 50 independent runs and the best results are 

presented in the simulation results. The control parameter of DTO algorithm: population size 

(NP), mutation rate and the maximum iteration number (Itermax) are set to the values 30, 0.05, 

500 respectively. These values are obtained after testing and evaluating different parameter 

combination. To check the effectiveness, the proposed algorithm is implemented on two hydro 

thermal systems. The system-I consists of four hydro units and a number of thermal units 

represented by an equivalent thermal plant. The system-II consists of four cascaded thermal 

units and three thermal units. The scheduling period of 24 hour, with one hour time interval is 

considered for simulation study. The hydraulic sub-system is characterized by the following: 

a) A multichain cascade flow network , with all of the plants in one stream; 

b) River transport delay between successive reservoirs; 

c) Variable head hydro plants; 

d) Variable natural inflow rates into each reservoir; 

e) Prohibited operating regions of water discharge rates; 

f) Variable load demand over scheduling period. 

A. Test System-I:  

 The data of the test system-I considered here are the same as in [8] and the additional data 

with valve point loading effect and with prohibited discharge zones (PDZ) of turbines are also 
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same as in Ref [11]. The fuel cost function of the equivalent thermal unit with valve point 

loading (VPL) is  

   



NH

j

jjj PTPTPTPTPTFC
1

min

2 085.0sin70050002.19002.0)(           (22) 

 The lower and upper operation limits of this unit are 500 and 2500 MW, respectively. The 

spillage rate for the hydraulic system-I is not taken into account (simplicity) and further, the 

electric loss from the hydro plant to the load is neglected. The lower and upper operation limits 

of hydraulic system are 0 and 500 MW, respectively.     

 The studied problem may be classified into three categories depending on the type of their 

fuel cost functions and constraints. 

Table 1. Optimal parameter setting 

 

  

 

 

 

 

 

 There are three different cases of the test system-I by considering the quadratic cost without 

prohibited discharge zones as case-1; quadratic cost with prohibited discharge zones as case-2 

and valve point loading with prohibited discharge zones are considered as case-3. The various 

control parameters like mutation rate, population size, maximum iteration number have been 

tested and finally the optimal setting of parameters are provided in Table 1. 

 

 

 

No of population Cost ($ / day) 
Elapsed time 

(Sec) 

Itermax=1000,     

Mutation rate=0.1 

10 917047.57 228.001586 

20 917088.01 416.152436 

30 916996.55 596.399059 

40 916998.97 765.596313 

50 917075.85 1017.857353 

No of iteration Cost ($ / day) 

Elapsed time 

(Sec) 

Population size      

Np=30,                  

Mutation rate = 0.1  

100 917169.92 115.18778 

200 917169.92 232.833243 

500 916998.81 350.371785 

800 917169.92 466.618372 

1000 917075.85 596.399059 

Mutation rate Cost ($ / day) 

Elapsed time 

(Sec) 

Itermax=500,   

Population size      

Np=30,  

0.05 916926.48 351.931416 

0.1 916998.81 350.371785 

0.15 917095.04 354.555185 

0.2 917298.1 358.357667 

Bold front indicates minimum function value 
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A.1 Case 1 (HTS problems with quadratic cost functions):  

 In this case, the cost functions of the thermal units of the hydrothermal system are 

considered to be quadratic and there is no prohibited discharge zone of the reservoirs of the 

hydro plants. The valve point loading of thermal units are also neglected. The Figure 1 shows 

the cost variation of best hydro thermal schedule of the proposed DTO method when executed 

50 times with different random initial solutions. The optimal hourly water discharge of hydro 

plants obtained by the proposed DTO algorithm is represented in Fig. 2. The proposed DTO 

approach takes execution time of 351.9314 sec. to obtain the best hydro thermal scheduling. 

The best results obtained by the proposed algorithm are compared with the reported results by 

other methods, namely genetic algorithm (GA) [8], classical evolutionary programming (CEP) 

[11], fast evolutionary programming (FEP) [11], improved fast evolutionary programming 

(IFEP) [11], binary coded genetic algorithm (BCGA) [14], real coded genetic algorithm 

(RCGA) [14], modified differential evolution (MDE) [15], improved PSO (IPSO) [16], 

teaching learning based optimization (TLBO) [23], improved differential evolution (IDE) [24] 

and Symbiotic organisms search (SOS) [26] and presented in Table 2. It can be found that the 

DTO produces better execution time, minimum cost, average cost and worst cost than those 

obtained by the other existing techniques. The hourly power generations of hydro plants 

obtained by the proposed method in this case are shown in Figure 3.  
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Figure 1. Convergence characteristics of DTO algorithm case-1 of test system-I. 

 

 
Figure 2. Hourly plants discharge ( x 104  m3) for case 1 of Test system-I 

 

Double Teaching Optimization for Short Term Hydro 

330



 

 

0 5 10 15 20 25
0

50

100

150

200

250

300

Hour

H
y

d
ro

 p
o

w
er

 g
en

er
at

io
n

 (
M

W
)

 

 

plant1

plant2

plant3

plant4

 
Figure 3.  Hourly hydro plant power generations of DTO algorithm. 

 

A.2 Case 2. (HTS problem with quadratic cost functions and prohibited discharge zones): 

 Here, the prohibited operating zones of reservoirs of hydro plants have been considered to 

check the feasibility of the proposed approach. The optimal hourly water discharge of hydro 

units of system-I obtained by the proposed DTO algorithm are given in Fig. 5. The fuel cost 

obtained by DTO method is compared to other methods and presented in Table 3. It is found 

that the DTO method provides cheapest generation schedule in comparison to IPSO [16] and 

TLBO [23] methods and more than SOS [26] method. The cost convergence characteristic 

obtained by DTO method is shown in Figure 4. 
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Figure 4. Convergence characteristics of DTO algorithm case-2 of test system-I 

 

 
Figure 5. Hourly plants discharge ( x 104  m3) for case 2 of Test system-I 

Ajit Kumar Barisal, et al.

331



 

 

Table 2. Comparison of optimal costs for test system-I with quadratic cost and no prohibited 

discharge zone (case 1) 

Method Best fuel cost ($) 
Average fuel cost 

($/day) 

Worst fuel cost 

($/day) 
CPU time (sec) 

GA[8] 932734 936969 939734 - 

EP[11] 930267.92 930897.44 931396.81 - 

CEP[11] 930166.25 930373.23 930927.01 - 

IFEP[11] 930129.82 930290.13 930881.92 1033.2 

BCGA[14] 926922.71 927815.35 929451.09 - 

RCGA[14] 925940.03 926120.26 926538.81 - 

MDE[15] 922555.44 - - - 

IPSO  [16] 922553.49 - - - 

TLBO 

[23] 
922373.39 922462.24 922873.81 374.918 

IDE[24] 917237.7 917250.1 917277.8 366.0781 

SOS[26] 922332.17 922338.2 922482.2 6.21 

DTO 916926.48 916962.37 916998.76 351.932 

 

 

Table 3. Comparison of optimal costs for test system-I case-2 with  

quadratic cost and with PDZ 

Method Minimum cost ($/day) 

IPSO  [16] 923443.17 

TLBO [23] 923041.91 

SOS[26] 922844.7835 

DTO 923010.56 

 

A.3 Case 3.(HTS problem considering valve point effect and prohibited discharge zone):      

 In this case, the valve point loading of thermal units and prohibited operating zones of 

hydro units are taken in to consideration to verify the robustness of proposed approach. The 

optimal hourly water discharges of reservoirs obtained by the proposed DTO algorithm are 

furnished in Fig. 6. The obtained fuel cost in this case is compared to that of IFEP [11], DE 

[15], IPSO [16], TLBO [23] and IDE [24] methods and reported in Table 4. From this Table 4, 
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one can see the superiority of the proposed DTO method over other reported techniques. The 

cost convergence characteristic and the trajectories of hourly reservoirs volumes of hydro 

plants by DTO algorithm are shown in Figures 7 and 8, respectively. 

 

 
Figure 6. Hourly plants discharge ( x 104  m3) case-3 of Test system-I 

 

Table 4. Comparison of optimal costs for test system-I case-3 [VPL & PDZ] 

 

0 100 200 300 400 500
9.25

9.3

9.35

9.4

9.45

9.5
x 10

5

Number of Iteration

F
u

el
 C

o
st

 (
$

/d
ay

)

 
Figure 7. Convergence characteristics of DTO algorithm case-3 of test system-I 

Method 
Best fuel 

cost ($) 

Verified 

Best fuel 

cost ($) 

Average 

fuel 

cost ($/day) 

Worst fuel 
cost ($/day) 

CPU time 
Sec 

IFEP[11] 933949.25 933949.25 938508.87 942593.02 1450.9 

DE [15] 935617.76 935617.76 - -   

IPSO  [16] 925978.84 925978.84 - - 31.11 

TLBO [23] 
924550.78 

Without VPL 
930761.58 924702.43 925149.06 362.54 

IDE [24] 923016.29 927814.96 923036.28 923152.06 547.07 

DTO 925701.195 925701.195 925765.14 925792.88 330.65 
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Figure 8.  Hydro reservoir storage volumes of DTO algorithm. 

 

B. Test system-II 

 The test system-II is the modified version of test system-I that comprises four hydro plants 

coupled hydraulically and three thermal plants. This system does not have the prohibited 

discharge zones. The data of the test system-II is adopted from reference [12].  

B.1 Case-1: Quadratic cost function with valve point loading effect and without transmission 

losses 

    The total fuel cost FC as a function of power output of the thermal plant [12] is represented 

as 

   
 



nt

i

NH

j

jiiiiijiijii PTPTedaPTbPTcFC

1 1

,min,,
2
, sin                        (23) 

 

Table 5.  Optimal hourly discharges( x 104  m3)  ,hydro generation, thermal generation of test 

system-II (case-1) 
Hour Q1 Q2 Q3 Q4 PH1 PH2 PH3 PH4 PT1 PT2 PT3 PD 

1 11.2108 7.8670 18.1967 7.8825 90.4679 61.2921 48.5182 151.4142 43.8801 124.9079 229.5196 750 

2 6.3735 6.0000 30.0000 6.0000 64.1417 50.2403 0 123.9959 20.0000 292.1027 229.5195 780 

3 13.6333 6.0000 17.1328 6.0158 95.1161 51.9231 44.0620 120.0206 34.4507 124.9079 229.5196 700 

4 5.1769 6.0000 16.4231 6.0000 53.5039 53.5339 45.8871 113.9411 28.7062 124.9081 229.5197 650 

5 12.4808 6.0000 19.3367 6.0000 90.6404 54.5678 37.4559 125.6499 97.0185 124.9078 139.7597 670 

6 5.2826 6.0311 6.0311 6.0142 53.1743 55.2828 39.4547 146.2711 66.4809 209.8165 229.5197 800 

7 6.5667 7.1837 15.3990 7.5040 63.6472 62.6183 50.0203 174.0177 160.3615 209.8158 229.5193 950 

8 6.1697 6.1903 17.6108 13.1740 61.4742 56.2400 43.1700 242.4549 167.3260 209.8155 229.5194 1010 

9 5.1040 6.0000 15.8076 10.9546 53.8204 55.8615 47.1154 225.7945 93.4055 294.7235 319.2792 1090 

10 5.1293 6.3039 17.4038 19.0088 55.0543 59.3489 41.9059 297.6735 96.9226 209.8157 319.2792 1080 

11 7.4942 6.1499 21.9732 13.3410 74.7182 59.5446 17.1839 252.7513 171.5589 294.7234 229.5195 1000 

12 5.7156 6.3444 19.5387 17.7217 61.2730 61.6824 27.1018 290.7043 95.2361 294.7231 319.2794 1150 
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Hour Q1 Q2 Q3 Q4 PH1 PH2 PH3 PH4 PT1 PT2 PT3 PD 

13 10.6577 6.7435 16.9611 19.0010 94.0865 65.0537 37.2966 296.3646 92.9556 294.7234 229.5195 1110 

14 12.5499 8.5325 21.3488 19.4397 101.0440 76.7794 15.0616 297.0336 100.7461 209.8157 229.5194 1030 

15 10.0597 6.0000 16.3432 16.7164 91.2957 61.1145 37.9048 283.0508 102.1509 294.7235 139.7597 1010 

16 9.6824 
10.400

6 
17.9833 19.4547 89.3868 87.0521 34.0868 302.5830 107.5556 209.8159 229.5198 1060 

17 8.0957 8.1594 12.3838 19.5051 79.9000 74.2816 47.8143 300.3157 108.3527 209.8161 229.5196 1050 

18 11.7338 
13.697

8 
27.9055 19.4099 97.9147 94.6101 0 301.6931 101.5391 294.7234 229.5195 1120 

19 6.6402 6.0131 13.3825 18.9552 68.7791 56.7542 45.9461 296.1575 167.8816 294.7224 139.7592 1070 

20 5.9697 
12.895

8 
10.2863 19.9588 63.3104 89.9132 48.6703 300.2831 108.4873 209.8162 229.5196 1050 

21 11.4877 
14.851

5 
11.3119 19.7616 95.7895 90.9157 52.5113 291.2514 25.1040 124.9084 229.5196 910 

22 5.0875 
14.205

1 
10.6923 19.1882 55.3913 85.9300 52.7244 297.0014 99.4333 40.0000 229.5196 860 

23 5.4881 9.7507 11.1700 19.7684 59.3174 69.2198 56.2438 293.8147 20.0000 121.8848 229.5196 850 

24 7.2102 
14.679

6 
10.8653 19.9512 73.7442 80.4227 57.4621 284.1367 34.7147 40.0000 229.5196 800 

Total Cost  of thermal generation ($/day)                       40727.733 

Elapsed time (Sec)                                   558.5361 seconds. 

 

Table 6. Comparison of optimal costs for test system-II with valve point loading (VPL) and 

without transmission losses (case 1) 

Method 
Best fuel Average fuel Worst fuel 

CPU 

time 

cost ($/day) cost ($/day) cost ($/day) (sec) 

Fuzzy 

EP[12] 45063 936969 939734 - 

DE [15] 44526.1 - - - 

MDE [15] 42611.14 - - - 

PSO    [18] 42474 - - - 

IPSO  [19] 44321.236 - - - 

CSA[19] 42440.574 - - - 

TLBO [23] 42385.88 42407.23 42441.36 527.359 

KHA[25] 41926 41998.58 42174.35 - 

DTO 40727.733 40788.221 40819.91 558.436 
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 In this case study the number of decision variable is 168 (4 24 + 3 24) representing the 

discharges of four hydro reservoirs and generation of three thermal plants over the entire 

scheduling horizon.  The optimal hourly discharges obtained by proposed DTO method, 

generated powers from hydro and thermal plants over the entire scheduling period are provided 

in Table 5. The optimal cost obtained from the proposed DTO based approach have also been 

compared with that of EP [12], DE [15], MDE [15], PSO [18], CSA [19], TLBO [23] and 

KHA[25]and details are given in Table 6. From the result, it is quite evident that the proposed 

DTO based algorithm provides better solution for the cascaded hydro reservoirs with multiple 

thermal power plants. 

 

B.2  Case 2 :  Quadratic cost function with valve-point loading  with transmission losses 

  The transmission losses also have been considered for the test system-II. The losses are 

computed using the loss coefficients and is given by 
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 Where   ijB  , iB0 , 00B  are the loss formula coefficients and are given in [15]. In this case 

study the number of decision variables is also 168 representing the discharge of four hydro 

reservoir and generations of three thermal plants over the entire scheduling period. The optimal 

hourly discharges, hourly generated powers from hydro and thermal plants and transmission 

losses over the entire scheduling period obtained by the proposed method are provided in Table 

7. The optimal cost obtained from the proposed DTO based approach have also been compared 

with that of MDE [15] and IDE [24] and details are furnished in Table 8. From the Table 8, it is 

clear that the dispatch result obtained by the proposed DTO satisfies all kinds of constraints of 

HTS problem while reducing the total fuel cost effectively and efficiently.  

 

Table 7. Optimal hourly discharges (x 104  m3), hydro generation, thermal generation and 

transmission losses of test system-II (case-2) 

Time Q1 Q2 Q3 Q4 PH1 PH2 PH3 PH4 PT1 PT2 PT3 PL PD 

1 9.2157 6.0179 22.1487 6.5358 82.3952 50.2813 29.866 135.6441 103.5467 124.908 229.5196 6.1608 750 

2 7.602 6.0000 24.2115 6.0000 73.1627 51.286 10.3722 125.2484 91.7423 294.7237 139.7598 6.295 780 

3 6.7677 6.0000 24.2589 6.0019 67.5925 52.9244 4.9623 121.1391 104.7201 124.9079 229.5196 5.766 700 

4 7.3498 6.0000 16.7835 6.0000 71.6794 54.4909 41.9648 115.2915 21.3704 209.8159 139.7598 4.3725 650 

5 5.7963 6.0359 21.2628 6.0193 59.9607 55.7383 21.0246 130.7137 53.6367 124.908 229.5196 5.5016 670 

6 7.4687 6.2519 17.1063 6.2845 72.4273 57.6625 38.9919 149.4209 134.2167 124.9079 229.5196 7.1467 800 

7 9.3087 6.4096 19.5355 8.3738 83.1158 58.5776 27.7337 189.5835 166.6832 294.7237 139.7598 10.1773 950 

8 9.6753 6.2507 16.5256 14.8044 84.745 57.8206 38.3651 261.6549 142.0795 209.8158 229.5196 14.0006 1010 

9 10.1201 9.0696 17.7565 18.3142 86.7973 75.0047 33.9765 292.3191 94.4414 294.7236 229.5196 16.7822 1090 

10 9.8204 8.0003 17.8777 18.6066 85.8105 69.3673 33.201 292.8001 91.2477 294.7237 229.5195 16.6699 1080 
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Time Q1 Q2 Q3 Q4 PH1 PH2 PH3 PH4 PT1 PT2 PT3 PL PD 

11 10.4358 9.1442 17.6418 18.1664 89.1584 75.869 33.9218 291.1647 102.4811 294.7236 229.5196 16.8382 1100 

12 8.214 8.3442 18.3763 17.7913 77.9312 71.172 32.3004 287.2613 174.9267 294.7237 229.5195 17.8349 1150 

13 10.0553 9.5758 17.739 17.8875 88.3247 77.0926 36.6128 287.819 108.2754 209.8159 319.2794 17.2199 1110 

14 9.7975 9.975 17.3289 18.3433 87.7202 78.5358 39.18 290.5288 106.1996 124.9082 319.2794 16.3518 1030 

15 9.4222 9.2877 17.0936 16.7381 86.1957 74.8897 41.5557 279.6553 103.2742 209.8158 229.5196 14.9061 1010 

16 7.0585 8.4744 18.8892 16.7408 71.6405 70.1418 36.2791 281.2316 92.3406 294.7237 229.5196 15.8768 1060 

17 8.803 8.8136 15.9704 17.7035 83.4145 71.0318 47.2446 288.5629 136.4023 209.8158 229.5196 15.9914 1050 

18 8.2978 11.3345 15.0329 19.8362 80.2174 79.6715 50.0613 300.0837 103.3574 294.7237 229.5196 17.6347 1120 

19 7.2429 9.9005 14.5534 17.3185 72.9428 71.5518 51.8523 283.0644 172.2444 294.7237 139.7598 16.1392 1070 

20 9.5821 12.2195 15.7376 19.999 86.7821 77.9611 50.7169 299.6297 112.1579 209.8158 229.5196 16.5831 1050 

21 5.3497 9.6259 11.9966 17.7141 57.3935 66.9752 55.6285 283.1171 21.7066 209.8159 229.5196 14.1564 910 

22 5.7392 11.7489 13.3763 19.4128 61.0688 73.8801 57.5599 289.6628 37.5699 124.9079 229.5196 14.169 860 

23 6.6117 11.1379 13.079 19.2874 68.5571 69.2698 58.7185 283.7585 28.8281 124.9079 229.5196 13.5595 850 

24 5.2657 6.382 13.8719 18.7505 57.4879 45.3111 58.8417 277.1939 20 124.3002 229.5196 12.6544 800 

Total Cost  of thermal generation ($/day)                       40433.56 

Elapsed time (Sec)                                   560.297 seconds. 

 

 

Table 8. Comparison of optimal costs for test system-II with valve point loading (VPL) and 

transmission losses (case 2) 

Method 

Best fuel 

cost 

($/day) 

Average 

fuel 

Cost 

 ($/day) 

Worst  

fuel 

cost  

($/day) 

CPU 

time 
Condition of 

(sec) PH+PT=PD+PL 

MDE 

[15] 
43435.41 - - - Satisfied 

IDE 

[24] 
40627.92 40708.53 40860.7 627.06 Not satisfied 

DTO 40433.56 40481.49 40509.66 560.297 Satisfied 

 

 

7. Conclusion 

 This paper proposes a new evolutionary derivative free double teaching optimization 

(DTO) algorithm successfully implemented to solve convex hydrothermal problems. The 

results have been compared with those obtained by other heuristic optimization techniques 

such as differential evolution (DE), modified DE, Improved PSO (IPSO), TLBO, Improved DE 

(IDE) algorithm, Krill herd Algorithm (KHA) and Symbiotic Organisms Search (SOS) 

algorithms. It is found that the execution time and total production costs produced by the 
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proposed DTO method over the scheduling horizon is better or close to other existing 

optimization techniques in almost all cases considered in this study. 

 

8. Reference 

[1]. J. Wood, B. F. Wollenberg, “Power Generation Operation and Control”, John Wiley 

and Sons, New York , 1984. 

[2]. M. F. Carvalloh, S. Soares, “An efficient hydrothermal scheduling algorithm,” IEEE 

Transactions on Power Systems, Vol. 4, pp. 537-542, 1987.  

[3]. J. S. Yang, N. Chen, “Short term hydro thermal coordination using multi-pass dynamic 

programming”, IEEE Transactions on Power Systems, Vol. 4, No. 3, pp. 1050-1056, 

1989. 

[4]. S. Chang, C. Chen, I. Fung, P. B. Luh, “Hydroelectric generation scheduling with an 

effective differential dynamic programming”, IEEE Transactions on Power Systems, 

Vol. 5, pp.737-743, 1990. 

[5]. R. Liang, Y. Hsu, “Scheduling of hydroelectric generation units using artificial neural 

networks”, In Generation, Transmission and Distribution, IEE Proceedings, Vol. 141, 

No. 5, pp. 452-458, 1994. 

[6]. K. P. Wong, Y. W. Wong, “Short term hydrothermal scheduling: part 1. Simulated 

annealing approach”, In Generation, Transmission and Distribution, IEE Proceedings, 

Vol. 141, No. 5, pp. 497-501, 1994.  

[7]. T. Nenad, “A coordinated approach for real-time short term hydro scheduling”, IEEE 

Transactions on Power Apparatus System., Vol. 11, No. 4,  pp. 1698-704, 1996. 

[8]. S. O. Orero, M. R. Irving, “A genetic algorithm modeling framework and solution 

technique for short term optimal hydro thermal scheduling”, IEEE Transactions on 

Power Systems, Vol. 13, No. 2, pp.501-518, 1998. 

[9]. P. K. Hota, R. Chakrabarti, P. K. Chattopadhyay, “Short term hydro thermal Scheduling 

through evolutionary technique”, Electric Power Syst. Res., Vol. 52, pp.189-196. 1999. 

[10]. R. Naresh, J. Sharma, “Short term hydro scheduling using two phase neural network,” 

International Journal of Electrical Power and Energy Systems, Vol. 24, No. 7, pp. 583-

590, 2002. 

[11]. N. Sinha, R. Chakrabarti, P. K. Chattopadhyay, “Fast evolutionary technique for short 

term hydrothermal scheduling”, IEEE Transactions on Power Systems, Vol. 18, No. 1,  

pp. 214-220, 2003. 

[12]. M. Basu, “An interactive fuzzy satisfying method based on evolutionary programming 

technique for multi-objective short term hydro thermal scheduling”, Electric Power 

Systems Research, Vol. 69, No. (2-3), pp. 277-285, 2004. 

[13]. M. Basu, “A simulated annealing–based goal attainment method for economic emission 

load dispatch of fixed head hydro thermal power system”, International Journal of 

Electrical Power and Energy Systems, Vol. 27, No. 2, pp. 147-153, 2005. 

[14]. S. Kumar, R. Naresh, “Efficient real coded genetic algorithm to solve the non-convex 

hydro thermal scheduling problem”, International Journal of Electrical Power and 

Energy Systems, Vol. 29, No. 10, pp. 738-747, 2007. 

[15]. L. Lakshminarasimman, S. Subramanian, “Short term scheduling of hydro thermal 

power system with cascaded reservoirs by using modified differential evolution”, IEE 

Proc Gener. Transm. Distrib. Vol. 153, No. 6, pp. 693-700, 2006. 

Double Teaching Optimization for Short Term Hydro 

338



 

 

[16]. P. K. Hota, A. K. Barisal, R. Chakrabarti, “An improved PSO technique for short term 

optimal hydrothermal scheduling”, Electric Power Systems Research, 79, No. 7, pp. 

1047-1053, 2009. 

[17]. P. K. Roy, D. Mandal, “Quasi-oppositional biogeography-based optimization for multi-

objective optimal power flow”, Electric Power Components and Systems Vol. 40, No. 2, 

pp. 236-256, 2011. 

[18]. K. K. Mandal, N. Chakraborty, “Short term combined economic emission scheduling of 

hydro thermal system with cascaded reservoir using particle swarm optimization 

technique”, Applied Soft Computing, Vol. 11, No. 1, pp. 1295-1302, 2011. 

[19]. R. K. Swain, A. K. Barisal, P. K. Hota, R. Chakrabarti, “Short term hydro thermal 

scheduling using clonal selection algorithm”, International Journal of Electrical Power 

and Energy Systems, Vol. 33 No. 3, pp.647-656, 2011.  

[20]. R. V. Rao, V. J. Savsani, D. P. Vakharia, “Teaching- learning based optimization: an 

optimization method for continuous non-linear large scale problems”, Information 

Sciences, Vol. 183, No. 1, pp. 1-15, 2012. 

[21]. X. Liao, J. Zhou, R. Zhang, Y. Zhang, “An adaptive artificial bee colony algorithm for 

long term economic dispatch in cascaded hydropower systems”, International Journal 

of Electrical Power and Energy Systems, Vol. 43, No. 1, pp. 1340-1345, 2012. 

[22]. V. H. Hinojosa, C. Leyton, “Short term hydrothermal generation scheduling solved with 

a mixed binary evolutionary particle swarm optimizer”, Electric Power Systems 

Research, Vol. 92, pp. 162-170, 2012. 

[23]. P. K. Roy, “Teaching learning based optimization for short term hydro thermal 

scheduling problem considering valve point effect and prohibited discharge constraint”, 

International Journal of Electrical Power and Energy Systems, Vol. 53, pp.10-19, 2013. 

[24]. M. Basu, “Improved differential evolution for short term hydro thermal scheduling”, 

International Journal of Electrical Power and Energy Systems, Vol. 58, pp. 91-100, 

2014. 

[25]. Provas Kumar Roy, Moumita Pradhan, Tandra Paul. “Krill herd algorithm applied to 

short-term hydrothermal scheduling problem”, Ain Shams Engineering Journal, In 

Press, https://doi.org/10.1016/j.asej.2015.09.003,October 2015. 

[26]. Sujoy Das, A. Bhattacharya. “Symbiotic organisms search algorithm for short-term 

hydrothermal scheduling”, Ain Shams Engineering Journal, In Press, 

https://doi.org/10.1016/j.asej.2016.04.002, April 2016. 

 

List of symbols 

FC      total generation cost 

jPT       power generation of thermal unit at j time interval. 

jiPH ,   power generation of
thi hydro unit at 

thj  time interval. 

Pg         power generations from both thermal and hydro at each time interval. 

jPD     the load demand at the 
thj  time interval 

jPL      the transmission loss at the 
thj  time interval.  

ia ,
 ib  ,

 ic  , id  , ie   the fuel cost coefficients of the 
thi  thermal plant. 
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iC ,1
,
 iC ,2

 ,
 iC ,3  , iC ,4  , iC ,5

, 
iC ,6
 the power generation coefficients of 

thi hydro plant. 

jiQ ,      
the water discharge of the 

thi  hydro plants during the 
thj  time interval. 

iQmax,  
 the maximum water discharge rate of the 

thi  hydro plants       

iQmin,   
the minimum water discharge rate of the 

thi hydro plants  

jiV ,     
 the water storage level in the 

thi hydro reservoir at the beginning of the 
thj  time  

interval. 

1,iV  , 25,iV   the volume of the 
thi  reservoir at the beginning of 1st and 25th hour. 

iVmin,
, 

iVmax,
the minimum and maximum water storage level limit of the 

thi  hydro reservoir. 

jiI ,
     the natural inflow of the 

thi  reservoir at the 
thj  time interval. 

jiS ,     
Spillage discharge rate of the 

thi  reservoir at the 
thj  time interval. 

        Water delay time between reservoir i and its up-stream u at interval j . 

uR       Set of upstream units directly above hydro-plant i . 

nh
      

number of hydro unit 

nt
       

number of thermal unit     

NH
     

number of time interval 

Np      number of population 

k

jiX ,
, 

1

,

k

jiX  the grade of the 
thj subject of the 

thi student at the 
thk and 

thk )1(   iteration 

k

diffj       the difference between the mean of the
thj control variable at the

thk and 

thk )1(  iteration. 

rand     random number between [0,1] 
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